BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 27086711)

  • 1. The promiscuous phosphomonoestearase activity of Archaeoglobus fulgidus CopA, a thermophilic Cu+ transport ATPase.
    Bredeston LM; González Flecha FL
    Biochim Biophys Acta; 2016 Jul; 1858(7 Pt A):1471-8. PubMed ID: 27086711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a thermophilic P-type Ag+/Cu+-ATPase from the extremophile Archaeoglobus fulgidus.
    Mandal AK; Cheung WD; Argüello JM
    J Biol Chem; 2002 Mar; 277(9):7201-8. PubMed ID: 11756450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the ATP binding domain from the Archaeoglobus fulgidus Cu+-ATPase.
    Sazinsky MH; Mandal AK; Argüello JM; Rosenzweig AC
    J Biol Chem; 2006 Apr; 281(16):11161-6. PubMed ID: 16495228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible unfolding of a thermophilic membrane protein in phospholipid/detergent mixed micelles.
    Roman EA; Argüello JM; González Flecha FL
    J Mol Biol; 2010 Mar; 397(2):550-9. PubMed ID: 20114054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of Archaeoglobus fulgidus Cu(+)-ATPase CopA by cysteine.
    Yang Y; Mandal AK; Bredeston LM; González-Flecha FL; Argüello JM
    Biochim Biophys Acta; 2007 Mar; 1768(3):495-501. PubMed ID: 17064659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional roles of metal binding domains of the Archaeoglobus fulgidus Cu(+)-ATPase CopA.
    Mandal AK; Argüello JM
    Biochemistry; 2003 Sep; 42(37):11040-7. PubMed ID: 12974640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy metal transport CPx-ATPases from the thermophile Archaeoglobus fulgidus.
    Argüello JM; Mandal AK; Mana-Capelli S
    Ann N Y Acad Sci; 2003 Apr; 986():212-8. PubMed ID: 12763798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformations of the apo-, substrate-bound and phosphate-bound ATP-binding domain of the Cu(II) ATPase CopB illustrate coupling of domain movement to the catalytic cycle.
    Jayakanthan S; Roberts SA; Weichsel A; Argüello JM; McEvoy MM
    Biosci Rep; 2012 Oct; 32(5):443-53. PubMed ID: 22663904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation and Functional Role of the Orientations of the N- and P-Domains of Cu+ -Transporting ATPase along the Ion Transport Cycle.
    Meng D; Bruschweiler-Li L; Zhang F; Brüschweiler R
    Biochemistry; 2015 Aug; 54(32):5095-102. PubMed ID: 26196187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of the actuator domain from the Archaeoglobus fulgidus Cu(+)-ATPase.
    Sazinsky MH; Agarwal S; Argüello JM; Rosenzweig AC
    Biochemistry; 2006 Aug; 45(33):9949-55. PubMed ID: 16906753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The RadA protein from a hyperthermophilic archaeon Pyrobaculum islandicum is a DNA-dependent ATPase that exhibits two disparate catalytic modes, with a transition temperature at 75 degrees C.
    Spies M; Kil Y; Masui R; Kato R; Kujo C; Ohshima T; Kuramitsu S; Lanzov V
    Eur J Biochem; 2000 Feb; 267(4):1125-37. PubMed ID: 10672022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of metal-binding domains of the copper pump from Archaeoglobus fulgidus.
    Rice WJ; Kovalishin A; Stokes DL
    Biochem Biophys Res Commun; 2006 Sep; 348(1):124-31. PubMed ID: 16876128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Archaeoglobus fulgidus CopB is a thermophilic Cu2+-ATPase: functional role of its histidine-rich-N-terminal metal binding domain.
    Mana-Capelli S; Mandal AK; Argüello JM
    J Biol Chem; 2003 Oct; 278(42):40534-41. PubMed ID: 12876283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and structure of a Zn2+ and [2Fe-2S]-containing copper chaperone from Archaeoglobus fulgidus.
    Sazinsky MH; LeMoine B; Orofino M; Davydov R; Bencze KZ; Stemmler TL; Hoffman BM; Argüello JM; Rosenzweig AC
    J Biol Chem; 2007 Aug; 282(35):25950-9. PubMed ID: 17609202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanism of Cu+ transport ATPases: interaction with CU+ chaperones and the role of transient metal-binding sites.
    Padilla-Benavides T; McCann CJ; Argüello JM
    J Biol Chem; 2013 Jan; 288(1):69-78. PubMed ID: 23184962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleotide recognition by CopA, a Cu+-transporting P-type ATPase.
    Tsuda T; Toyoshima C
    EMBO J; 2009 Jun; 28(12):1782-91. PubMed ID: 19478797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal stability of CopA, a polytopic membrane protein from the hyperthermophile Archaeoglobus fulgidus.
    Cattoni DI; González Flecha FL; Argüello JM
    Arch Biochem Biophys; 2008 Mar; 471(2):198-206. PubMed ID: 18187034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pH optimum of native uracil-DNA glycosylase of Archaeoglobus fulgidus compared to recombinant enzyme indicates adaption to cytosolic pH.
    Knævelsrud I; Kazazic S; Birkeland NK; Bjelland S
    Acta Biochim Pol; 2014; 61(2):393-5. PubMed ID: 24936520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites.
    González-Guerrero M; Argüello JM
    Proc Natl Acad Sci U S A; 2008 Apr; 105(16):5992-7. PubMed ID: 18417453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Forms of LonB protease from Archaeoglobus fulgidus devoid of the transmembrane domain: the contribution of the quaternary structure to the regulation of enzyme proteolytic activity].
    Makhovskaia OV; Kozlov S; Botos I; Stepnov AA; Andrianova AG; Gushchina AE; Vlodaver A; Mel'nikov EE; Rotanova TV
    Bioorg Khim; 2007; 33(6):657-60. PubMed ID: 18173131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.