These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 27087200)

  • 1. Characterization of the quasi-static and viscoelastic properties of orthopaedic bone cement at the macro and nanoscale.
    Slane J; Vivanco JF; Squire M; Ploeg HL
    J Biomed Mater Res B Appl Biomater; 2017 Aug; 105(6):1461-1468. PubMed ID: 27087200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale characterization of acrylic bone cement modified with functionalized mesoporous silica nanoparticles.
    Slane J; Vivanco J; Ebenstein D; Squire M; Ploeg HL
    J Mech Behav Biomed Mater; 2014 Sep; 37():141-52. PubMed ID: 24911668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing mechanical properties of an injectable two-solution acrylic bone cement using a difunctional crosslinker.
    Wiegand MJ; Faraci KL; Reed BE; Hasenwinkel JM
    J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):783-790. PubMed ID: 30184331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of a bisphosphonate, disodium pamidronate, on the quasi-static flexural properties of Palacos R acrylic bone cement.
    Zenios M; Nokes L; Galasko CS
    J Biomed Mater Res B Appl Biomater; 2004 Nov; 71(2):322-6. PubMed ID: 15384075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological and mechanical properties of PMMA-based bioactive bone cements.
    Mousa WF; Kobayashi M; Shinzato S; Kamimura M; Neo M; Yoshihara S; Nakamura T
    Biomaterials; 2000 Nov; 21(21):2137-46. PubMed ID: 10985486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [A study on the mechanical properties of bone cement (methylmethacrylate) and its strength alteration in vivo (author's transl)].
    Kon H
    Nihon Seikeigeka Gakkai Zasshi; 1981 Jan; 55(1):71-83. PubMed ID: 7276662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viscoelastic properties of injectable bone cements for orthopaedic applications: state-of-the-art review.
    Lewis G
    J Biomed Mater Res B Appl Biomater; 2011 Jul; 98(1):171-91. PubMed ID: 21504058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viscoelastic behaviour of acrylic bone cements.
    Yetkinler DN; Litsky AS
    Biomaterials; 1998 Sep; 19(17):1551-9. PubMed ID: 9830980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic creep and mechanical characteristics of SmartSet GHV bone cement.
    Liu CZ; Green SM; Watkins ND; Baker D; McCaskie AW
    J Mater Sci Mater Med; 2005 Feb; 16(2):153-60. PubMed ID: 15744604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of nanofiller-loaded poly (methyl methacrylate) bone cement composites for orthopedic applications: a review.
    Lewis G
    J Biomed Mater Res B Appl Biomater; 2017 Jul; 105(5):1260-1284. PubMed ID: 26968438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Augmentation of acrylic bone cement with multiwall carbon nanotubes.
    Marrs B; Andrews R; Rantell T; Pienkowski D
    J Biomed Mater Res A; 2006 May; 77(2):269-76. PubMed ID: 16392130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formulation and characterization of antimicrobial quaternary ammonium dendrimer in poly(methyl methcarylate) bone cement.
    Abid CK; Jain S; Jackeray R; Chattopadhyay S; Singh H
    J Biomed Mater Res B Appl Biomater; 2017 Apr; 105(3):521-530. PubMed ID: 26584408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of the small-punch test as a technique for characterizing the mechanical properties of acrylic bone cement.
    Dunne NJ; Leonard D; Daly C; Buchanan FJ; Orr JF
    Proc Inst Mech Eng H; 2006 Jan; 220(1):11-21. PubMed ID: 16459442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone cement modeling for percutaneous vertebroplasty.
    Lepoutre N; Meylheuc L; Bara GI; Barbé L; Bayle B
    J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1504-1515. PubMed ID: 30267639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compressive fatigue properties of commercially available standard and low-modulus acrylic bone cements intended for vertebroplasty.
    Robo C; Öhman-Mägi C; Persson C
    J Mech Behav Biomed Mater; 2018 Jun; 82():70-76. PubMed ID: 29571115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creep characteristics of hand- and vacuum-mixed acrylic bone cement at elevated stress levels.
    Norman TL; Kish V; Blaha JD; Gruen TA; Hustosky K
    J Biomed Mater Res; 1995 Apr; 29(4):495-501. PubMed ID: 7622534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [In vitro studies on various PMMA bone cements: a first comparison of new materials for arthroplasty].
    Kock HJ; Huber FX; Hillmeier J; Jäger R; Volkmann R; Handschin AE; Letsch R; Meeder PJ
    Z Orthop Unfall; 2008; 146(1):108-13. PubMed ID: 18324591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acrylic bone cements: influence of time and environment on physical properties.
    Nottrott M
    Acta Orthop Suppl; 2010 Jun; 81(341):1-27. PubMed ID: 20486859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of an accelerated aging medium for acrylic bone cement based on analysis of nanoindentation measurements on laboratory-prepared and retrieved specimens.
    Lewis G; Xu J; Dunne N; Daly C; Orr J
    J Biomed Mater Res B Appl Biomater; 2007 May; 81(2):544-50. PubMed ID: 17041926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of two variables on the fatigue performance of acrylic bone cement: mixing method and viscosity.
    Lewis G
    Biomed Mater Eng; 1999; 9(4):197-207. PubMed ID: 10674174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.