These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 27087242)

  • 21. Recent applications of microwave irradiation to medicinal chemistry.
    Alcázar J; Oehlrich D
    Future Med Chem; 2010 Feb; 2(2):169-76. PubMed ID: 21426184
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accurate conventional and microwave-assisted synthesis of galloyl hydrazide.
    Rabie AM
    MethodsX; 2020; 7():100737. PubMed ID: 32025504
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microwave Flow Chemistry as a Methodology in Organic Syntheses, Enzymatic Reactions, and Nanoparticle Syntheses.
    Horikoshi S; Serpone N
    Chem Rec; 2019 Jan; 19(1):118-139. PubMed ID: 30277645
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis of Four-Disulfide Insulin Analogs via Sequential Disulfide Bond Formation.
    Wu F; Mayer JP; Gelfanov VM; Liu F; DiMarchi RD
    J Org Chem; 2017 Apr; 82(7):3506-3512. PubMed ID: 28319665
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A biomimetic strategy in the synthesis and fragmentation of cyclic protein.
    Tam JP; Lu YA
    Protein Sci; 1998 Jul; 7(7):1583-92. PubMed ID: 9684891
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microwave Assisted Organic Synthesis of Heterocycles in Aqueous Media: Recent Advances in Medicinal Chemistry.
    Frecentese F; Saccone I; Caliendo G; Corvino A; Fiorino F; Magli E; Perissutti E; Severino B; Santagada V
    Med Chem; 2016; 12(8):720-732. PubMed ID: 27140185
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New Developments in Microwave-Assisted Solid Phase Peptide Synthesis.
    Singh SK; Collins JM
    Methods Mol Biol; 2020; 2103():95-109. PubMed ID: 31879920
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microwaves in organic synthesis. Thermal and non-thermal microwave effects.
    de la Hoz A; Díaz-Ortiz A; Moreno A
    Chem Soc Rev; 2005 Feb; 34(2):164-78. PubMed ID: 15672180
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microwave Assisted Reactions of Azaheterocycles Formedicinal Chemistry Applications.
    Amariucai-Mantu D; Mangalagiu V; Danac R; Mangalagiu II
    Molecules; 2020 Feb; 25(3):. PubMed ID: 32046020
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transformation of thiols to disulfides by epolactaene and its derivatives.
    Kuramochi K; Sunoki T; Tsubaki K; Mizushina Y; Sakaguchi K; Sugawara F; Ikekita M; Kobayashi S
    Bioorg Med Chem; 2011 Jul; 19(14):4162-72. PubMed ID: 21708466
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The impact of microwave synthesis on drug discovery.
    Kappe CO; Dallinger D
    Nat Rev Drug Discov; 2006 Jan; 5(1):51-63. PubMed ID: 16374514
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of microwave irradiation to the synthesis of 14-helical beta-peptides.
    Murray JK; Gellman SH
    Org Lett; 2005 Apr; 7(8):1517-20. PubMed ID: 15816741
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microwave-assisted acid and base hydrolysis of intact proteins containing disulfide bonds for protein sequence analysis by mass spectrometry.
    Reiz B; Li L
    J Am Soc Mass Spectrom; 2010 Sep; 21(9):1596-605. PubMed ID: 20488725
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Further applications of classical amide coupling reagents: Microwave-assisted esterification on solid phase.
    Takayama R; Hayakawa S; Hinou H; Albericio F; Garcia-Martin F
    J Pept Sci; 2018 Aug; 24(8-9):e3111. PubMed ID: 30009478
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis.
    Dahal N; García S; Zhou J; Humphrey SM
    ACS Nano; 2012 Nov; 6(11):9433-46. PubMed ID: 23033897
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Air oxidation method employed for the disulfide bond formation of natural and synthetic peptides.
    Calce E; Vitale RM; Scaloni A; Amodeo P; De Luca S
    Amino Acids; 2015 Aug; 47(8):1507-15. PubMed ID: 25900810
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Online microwave D-cleavage LC-ESI-MS/MS of intact proteins: site-specific cleavages at aspartic acid residues and disulfide bonds.
    Hauser NJ; Basile F
    J Proteome Res; 2008 Mar; 7(3):1012-26. PubMed ID: 18198820
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microwave: An Important and Efficient Tool for the Synthesis of Biological Potent Organic Compounds.
    Kumari K; Vishvakarma VK; Singh P; Patel R; Chandra R
    Curr Med Chem; 2017; 24(41):4579-4595. PubMed ID: 28554323
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Advances in automatic, manual and microwave-assisted solid-phase peptide synthesis.
    Sabatino G; Papini AM
    Curr Opin Drug Discov Devel; 2008 Nov; 11(6):762-70. PubMed ID: 18946841
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Site-specific PEGylation of protein disulfide bonds using a three-carbon bridge.
    Balan S; Choi JW; Godwin A; Teo I; Laborde CM; Heidelberger S; Zloh M; Shaunak S; Brocchini S
    Bioconjug Chem; 2007; 18(1):61-76. PubMed ID: 17226958
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.