BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 27087362)

  • 1. A new nano-engineered hierarchical membrane for concurrent removal of surfactant and oil from oil-in-water nanoemulsion.
    Qin D; Liu Z; Bai H; Sun DD; Song X
    Sci Rep; 2016 Apr; 6():24365. PubMed ID: 27087362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions.
    Zhang W; Zhu Y; Liu X; Wang D; Li J; Jiang L; Jin J
    Angew Chem Int Ed Engl; 2014 Jan; 53(3):856-60. PubMed ID: 24307602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anti-fouling graphene oxide based nanocomposites membrane for oil-water emulsion separation.
    Feng Y; Wang Z; Zhang R; Lu Y; Huang Y; Shen H; Lv X; Liu J
    Water Sci Technol; 2018 Mar; 77(5-6):1179-1185. PubMed ID: 29528305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible Hierarchical TiO2/Fe2O3 Composite Membrane with High Separation Efficiency for Surfactant-Stabilized Oil-Water Emulsions.
    Tan BY; Juay J; Liu Z; Sun D
    Chem Asian J; 2016 Feb; 11(4):561-7. PubMed ID: 26641598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrathin cellulose nanosheet membranes for superfast separation of oil-in-water nanoemulsions.
    Zhou K; Zhang QG; Li HM; Guo NN; Zhu AM; Liu QL
    Nanoscale; 2014 Sep; 6(17):10363-9. PubMed ID: 25073443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of isothermal low-energy nanoemulsion formation: hydrocarbon oil, non-ionic surfactant, and water systems.
    Komaiko J; McClements DJ
    J Colloid Interface Sci; 2014 Jul; 425():59-66. PubMed ID: 24776664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of organic and surfactant fouling using dynamic membranes in the separation of oil-in-water emulsions.
    Shao S; Liu Y; Shi D; Qing W; Fu W; Li J; Fang Z; Chen Y
    J Colloid Interface Sci; 2020 Feb; 560():787-794. PubMed ID: 31711667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new nanocomposite forward osmosis membrane custom-designed for treating shale gas wastewater.
    Qin D; Liu Z; Delai Sun D; Song X; Bai H
    Sci Rep; 2015 Sep; 5():14530. PubMed ID: 26416014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of asymmetric wettability in nanofiber membrane by electrospinning technique on separation of oil/water emulsion.
    Bae J; Kim H; Kim KS; Choi H
    Chemosphere; 2018 Aug; 204():235-242. PubMed ID: 29660536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of orange oil nanoemulsion formation by isothermal low-energy methods: influence of the oil phase, surfactant, and temperature.
    Chang Y; McClements DJ
    J Agric Food Chem; 2014 Mar; 62(10):2306-12. PubMed ID: 24564878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors that affect Pickering emulsions stabilized by graphene oxide.
    He Y; Wu F; Sun X; Li R; Guo Y; Li C; Zhang L; Xing F; Wang W; Gao J
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):4843-55. PubMed ID: 23647467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the formation of O/W nano-emulsions, by low-energy emulsification method, suitable for cosmeceutical applications.
    Jaworska M; Sikora E; Zielina M; Ogonowski J
    Acta Biochim Pol; 2013; 60(4):779-82. PubMed ID: 24432331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of surfactant charge on antimicrobial efficacy of surfactant-stabilized thyme oil nanoemulsions.
    Ziani K; Chang Y; McLandsborough L; McClements DJ
    J Agric Food Chem; 2011 Jun; 59(11):6247-55. PubMed ID: 21520914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Under-oil superhydrophilic wetted PVDF electrospun modified membrane for continuous gravitational oil/water separation with outstanding flux.
    Obaid M; Mohamed HO; Yasin AS; Yassin MA; Fadali OA; Kim H; Barakat NAM
    Water Res; 2017 Oct; 123():524-535. PubMed ID: 28697483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of salts on the phase behavior and the stability of nanoemulsions with rapeseed oil and an extended surfactant.
    Klaus A; Tiddy GJ; Solans C; Harrar A; Touraud D; Kunz W
    Langmuir; 2012 Jun; 28(22):8318-28. PubMed ID: 22537241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Janus Graphene Oxide Sponges for High-Purity Fast Separation of Both Water-in-Oil and Oil-in-Water Emulsions.
    Yun J; Khan FA; Baik S
    ACS Appl Mater Interfaces; 2017 May; 9(19):16694-16703. PubMed ID: 28481520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. O/W nano-emulsion formation using an isothermal low-energy emulsification method in a mixture of polyglycerol polyricinoleate and hexaglycerol monolaurate with glycerol system.
    Wakisaka S; Nishimura T; Gohtani S
    J Oleo Sci; 2015; 64(4):405-13. PubMed ID: 25766932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoemulsions prepared by a low-energy emulsification method applied to edible films.
    Bilbao-Sáinz C; Avena-Bustillos RJ; Wood DF; Williams TG; McHugh TH
    J Agric Food Chem; 2010 Nov; 58(22):11932-8. PubMed ID: 20977191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired Underwater Superoleophobic Membrane Based on a Graphene Oxide Coated Wire Mesh for Efficient Oil/Water Separation.
    Liu YQ; Zhang YL; Fu XY; Sun HB
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20930-6. PubMed ID: 26302148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smart Fiber Membrane for pH-Induced Oil/Water Separation.
    Li JJ; Zhou YN; Luo ZH
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19643-50. PubMed ID: 26293145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.