BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 27087782)

  • 1. Genetic diversity and population structure of
    Kim MS; Hohenlohe PA; Kim KH; Seo ST; Klopfenstein NB
    For Pathol; 2016 Apr; 46(2):164-167. PubMed ID: 27087782
    [No Abstract]   [Full Text] [Related]  

  • 2. Draft Genome Sequence of the Fungus Associated with Oak Wilt Mortality in South Korea,
    Jeon J; Kim KT; Song H; Lee GW; Cheong K; Kim H; Choi G; Lee YH; Stewart JE; Klopfenstein NB; Kim MS
    Genome Announc; 2017 Aug; 5(34):. PubMed ID: 28839019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening of Endophytic Fungal Isolates Against
    Nguyen MH; Yong JH; Sung HJ; Lee JK
    Mycobiology; 2020 Oct; 48(6):484-494. PubMed ID: 33312015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effect of Raffaelea quercus-mongolicae Inoculations on the Formation of Non-conductive Sapwood of Quercus mongolica.
    Torii M; Matsuda Y; Seo ST; Kim KH; Ito S; Moon MJ; Kim SH; Yamada T
    Mycobiology; 2014 Jun; 42(2):210-4. PubMed ID: 25071395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast Associated with the Ambrosia Beetle, Platypus koryoensis, the Pest of Oak Trees in Korea.
    Yun YH; Suh DY; Yoo HD; Oh MH; Kim SH
    Mycobiology; 2015 Dec; 43(4):458-66. PubMed ID: 26839506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fungal Community Analyses of Endophytic Fungi from Two Oak Species,
    Nguyen MH; Shin KC; Lee JK
    Mycobiology; 2021; 49(4):385-395. PubMed ID: 34512082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogeny of ambrosia beetle symbionts in the genus Raffaelea.
    Dreaden TJ; Davis JM; de Beer ZW; Ploetz RC; Soltis PS; Wingfield MJ; Smith JA
    Fungal Biol; 2014 Dec; 118(12):970-8. PubMed ID: 25457944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attack pattern of Platypus koryoensis (Coleoptera: Curculionidae: Platypodinae) in relation to crown dieback of Mongolian oak in Korea.
    Lee JS; Haack RA; Choi WI
    Environ Entomol; 2011 Dec; 40(6):1363-9. PubMed ID: 22217750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Filamentous Fungi Isolated from Platypus koryoensis, the Insect Vector of Oak Wilt Disease in Korea.
    Suh DY; Hyun MW; Kim SH; Seo ST; Kim KH
    Mycobiology; 2011 Dec; 39(4):313-6. PubMed ID: 22783124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential impact of global warming on deciduous oak dieback caused by ambrosia fungus Raffaelea sp. carried by ambrosia beetle Platypus quercivorus (Coleoptera: Platypodidae) in Japan.
    Kamata N; Kamata N; Esaki K; Kato K; Igeta Y; Wada K
    Bull Entomol Res; 2002 Apr; 92(2):119-26. PubMed ID: 12020369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Genetic variation and differentiation in population of Japanese emperor oak (Quercus dentata Thunb.) and Mongolian oak (quercus mongolica fisch. ex ledeb.) in the south of the Russian far east].
    Potenko VV; Koren' OG; Verkholat VP
    Genetika; 2007 Apr; 43(4):489-98. PubMed ID: 17555125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic comparisons of the laurel wilt pathogen, Raffaelea lauricola, and related tree pathogens highlight an arsenal of pathogenicity related genes.
    Ibarra Caballero JR; Jeon J; Lee YH; Fraedrich S; Klopfenstein NB; Kim MS; Stewart JE
    Fungal Genet Biol; 2019 Apr; 125():84-92. PubMed ID: 30716558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mortality due to Japanese oak wilt disease and surrounding forest compositions.
    Oguro M; Imahiro S; Saito S; Nakashizuka T
    Data Brief; 2015 Dec; 5():208-12. PubMed ID: 26543883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First Report of the Oak Wilt Fungus, Ceratocystis fagacearum, in New York State.
    Jensen-Tracy S; Kenaley S; Hudler G; Harrington T; Logue C
    Plant Dis; 2009 Apr; 93(4):428. PubMed ID: 30764247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic structure of the oak wilt vector beetle Platypus quercivorus: inferences toward the process of damaged area expansion.
    Shoda-Kagaya E; Saito S; Okada M; Nozaki A; Nunokawa K; Tsuda Y
    BMC Ecol; 2010 Oct; 10():21. PubMed ID: 20946691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fungus symbionts colonizing the galleries of the ambrosia beetle Platypus quercivorus.
    Endoh R; Suzuki M; Okada G; Takeuchi Y; Futai K
    Microb Ecol; 2011 Jul; 62(1):106-20. PubMed ID: 21384214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp.
    Kim SW; Kim KS; Lamsal K; Kim YJ; Kim SB; Jung M; Sim SJ; Kim HS; Chang SJ; Kim JK; Lee YS
    J Microbiol Biotechnol; 2009 Aug; 19(8):760-4. PubMed ID: 19734712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New compounds from Japanese oak wilt disease-associated fungus
    Nakamura T; Supratman U; Harneti D; Maharani R; Koseki T; Shiono Y
    Nat Prod Res; 2021 Dec; 35(23):5304-5310. PubMed ID: 32290697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Draft Genome Sequence of Raffaelea quercivora JCM 11526, a Japanese Oak Wilt Pathogen Associated with the Platypodid Beetle, Platypus quercivorus.
    Masuya H; Manabe R; Ohkuma M; Endoh R
    Genome Announc; 2016 Jul; 4(4):. PubMed ID: 27469944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The origin of Ceratocystis fagacearum, the oak wilt fungus.
    Juzwik J; Harrington TC; MacDonald WL; Appel DN
    Annu Rev Phytopathol; 2008; 46():13-26. PubMed ID: 18680421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.