These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 27087933)

  • 1. The fate of the Arctic seaweed Fucus distichus under climate change: an ecological niche modeling approach.
    Jueterbock A; Smolina I; Coyer JA; Hoarau G
    Ecol Evol; 2016 Mar; 6(6):1712-24. PubMed ID: 27087933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal.
    Jueterbock A; Tyberghein L; Verbruggen H; Coyer JA; Olsen JL; Hoarau G
    Ecol Evol; 2013 May; 3(5):1356-73. PubMed ID: 23762521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variation in thermal stress response in two populations of the brown seaweed, Fucus distichus, from the Arctic and subarctic intertidal.
    Smolina I; Kollias S; Jueterbock A; Coyer JA; Hoarau G
    R Soc Open Sci; 2016 Jan; 3(1):150429. PubMed ID: 26909170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of the Northern Rockweed, Fucus distichus, in a Regime of Glacial Cycling: Implications for Benthic Algal Phylogenetics.
    Laughinghouse HD; Müller KM; Adey WH; Lara Y; Young R; Johnson G
    PLoS One; 2015; 10(12):e0143795. PubMed ID: 26630571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arctic Edible Brown Alga
    Obluchinskaya ED; Pozharitskaya ON; Gorshenina EV; Zakharov DV; Flisyuk EV; Terninko II; Generalova YE; Shikov AN
    Plants (Basel); 2023 Jun; 12(12):. PubMed ID: 37376005
    [No Abstract]   [Full Text] [Related]  

  • 6. Decadal stability in genetic variation and structure in the intertidal seaweed Fucus serratus (Heterokontophyta: Fucaceae).
    Jueterbock A; Coyer JA; Olsen JL; Hoarau G
    BMC Evol Biol; 2018 Jun; 18(1):94. PubMed ID: 29907080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal variability in population demography and morphology of the habitat-forming macroalga Saccorhiza polyschides in the Western English Channel.
    Salland N; Wilding C; Jensen A; Smale DA
    Ann Bot; 2024 Mar; 133(1):117-130. PubMed ID: 37962600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arctic marine forest distribution models showcase potentially severe habitat losses for cryophilic species under climate change.
    Bringloe TT; Wilkinson DP; Goldsmit J; Savoie AM; Filbee-Dexter K; Macgregor KA; Howland KL; McKindsey CW; Verbruggen H
    Glob Chang Biol; 2022 Jun; 28(11):3711-3727. PubMed ID: 35212084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intertidal Canopy-forming Seaweeds Modulate Understory Seaweed Photoprotective Compounds.
    Roberts EA; Bracken MES
    J Phycol; 2021 Apr; 57(2):645-654. PubMed ID: 33314105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal stress resistance of the brown alga Fucus serratus along the North-Atlantic coast: acclimatization potential to climate change.
    Jueterbock A; Kollias S; Smolina I; Fernandes JM; Coyer JA; Olsen JL; Hoarau G
    Mar Genomics; 2014 Feb; 13():27-36. PubMed ID: 24393606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A regime shift in intertidal assemblages triggered by loss of algal canopies: A multidecadal survey.
    Álvarez-Losada Ó; Arrontes J; Martínez B; Fernández C; Viejo RM
    Mar Environ Res; 2020 Sep; 160():104981. PubMed ID: 32907719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forecasting distributional shifts of Patella spp. in the Northeast Atlantic Ocean, under climate change.
    Freitas D; Borges D; Arenas F; Pinto IS; Vale CG
    Mar Environ Res; 2023 Apr; 186():105945. PubMed ID: 36907078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the impact of sea-level rise on intertidal rocky shores with remote sensing.
    Schaefer N; Mayer-Pinto M; Griffin KJ; Johnston EL; Glamore W; Dafforn KA
    J Environ Manage; 2020 May; 261():110203. PubMed ID: 32148273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The microbiota of intertidal macroalgae Fucus distichus is site-specific and resistant to change following transplant.
    Davis KM; Mazel F; Parfrey LW
    Environ Microbiol; 2021 May; 23(5):2617-2631. PubMed ID: 33817918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling the biogeographic boundary shift of Calanus finmarchicus reveals drivers of Arctic Atlantification by subarctic zooplankton.
    Freer JJ; Daase M; Tarling GA
    Glob Chang Biol; 2022 Jan; 28(2):429-440. PubMed ID: 34652875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Community dynamics and ecological shifts on Mediterranean vermetid reefs.
    Rilov G; Peleg O; Guy-Haim T; Yeruham E
    Mar Environ Res; 2020 Sep; 160():105045. PubMed ID: 32827846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping present and future potential distribution patterns for a meso-grazer guild in the Baltic Sea.
    Leidenberger S; De Giovanni R; Kulawik R; Williams AR; Bourlat SJ; Maggs C
    J Biogeogr; 2015 Feb; 42(2):241-254. PubMed ID: 25653464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smooth or smothering? The self-cleaning potential and photosynthetic effects of oil spill on arctic macro-algae Fucus distichus.
    Wegeberg S; Hansson SV; van Beest FM; Fritt-Rasmussen J; Gustavson K
    Mar Pollut Bull; 2020 Jan; 150():110604. PubMed ID: 31671350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The complete mitogenome of the rockweed
    Hughey JR; Gabrielson PW
    Mitochondrial DNA B Resour; 2017 Apr; 2(1):203-204. PubMed ID: 33473768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating mechanistic and correlative niche models to unravel range-limiting processes in a temperate amphibian.
    Enriquez-Urzelai U; Kearney MR; Nicieza AG; Tingley R
    Glob Chang Biol; 2019 Aug; 25(8):2633-2647. PubMed ID: 31050846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.