These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 27088236)
1. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Yu KJ; Kuzum D; Hwang SW; Kim BH; Juul H; Kim NH; Won SM; Chiang K; Trumpis M; Richardson AG; Cheng H; Fang H; Thomson M; Bink H; Talos D; Seo KJ; Lee HN; Kang SK; Kim JH; Lee JY; Huang Y; Jensen FE; Dichter MA; Lucas TH; Viventi J; Litt B; Rogers JA Nat Mater; 2016 Jul; 15(7):782-791. PubMed ID: 27088236 [TBL] [Abstract][Full Text] [Related]
2. Advanced Materials and Devices for Bioresorbable Electronics. Kang SK; Koo J; Lee YK; Rogers JA Acc Chem Res; 2018 May; 51(5):988-998. PubMed ID: 29664613 [TBL] [Abstract][Full Text] [Related]
3. Ultrathin, Soft, Bioresorbable Organic Electrochemical Transistors for Transient Spatiotemporal Mapping of Brain Activity. Wu M; Yao K; Huang N; Li H; Zhou J; Shi R; Li J; Huang X; Li J; Jia H; Gao Z; Wong TH; Li D; Hou S; Liu Y; Zhang S; Song E; Yu J; Yu X Adv Sci (Weinh); 2023 May; 10(14):e2300504. PubMed ID: 36825679 [TBL] [Abstract][Full Text] [Related]
4. Bioresorbable Electrode Array for Electrophysiological and Pressure Signal Recording in the Brain. Xu K; Li S; Dong S; Zhang S; Pan G; Wang G; Shi L; Guo W; Yu C; Luo J Adv Healthc Mater; 2019 Aug; 8(15):e1801649. PubMed ID: 31168937 [TBL] [Abstract][Full Text] [Related]
5. Multiplexed Surface Electrode Arrays Based on Metal Oxide Thin-Film Electronics for High-Resolution Cortical Mapping. Londoño-Ramírez H; Huang X; Cools J; Chrzanowska A; Brunner C; Ballini M; Hoffman L; Steudel S; Rolin C; Mora Lopez C; Genoe J; Haesler S Adv Sci (Weinh); 2024 Mar; 11(10):e2308507. PubMed ID: 38145348 [TBL] [Abstract][Full Text] [Related]
6. A cortical recording platform utilizing microECoG electrode arrays. Kim J; Wilson JA; Williams JC Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5353-7. PubMed ID: 18003217 [TBL] [Abstract][Full Text] [Related]
7. Fine-scale mapping of cortical laminar activity during sleep slow oscillations using high-density linear silicon probes. Fiáth R; Raducanu BC; Musa S; Andrei A; Lopez CM; Welkenhuysen M; Ruther P; Aarts A; Ulbert I J Neurosci Methods; 2019 Mar; 316():58-70. PubMed ID: 30144495 [TBL] [Abstract][Full Text] [Related]
8. Bioresorbable silicon electronic sensors for the brain. Kang SK; Murphy RK; Hwang SW; Lee SM; Harburg DV; Krueger NA; Shin J; Gamble P; Cheng H; Yu S; Liu Z; McCall JG; Stephen M; Ying H; Kim J; Park G; Webb RC; Lee CH; Chung S; Wie DS; Gujar AD; Vemulapalli B; Kim AH; Lee KM; Cheng J; Huang Y; Lee SH; Braun PV; Ray WZ; Rogers JA Nature; 2016 Feb; 530(7588):71-6. PubMed ID: 26779949 [TBL] [Abstract][Full Text] [Related]
15. In-vivo implant mechanics of flexible, silicon-based ACREO microelectrode arrays in rat cerebral cortex. Jensen W; Yoshida K; Hofmann UG IEEE Trans Biomed Eng; 2006 May; 53(5):934-40. PubMed ID: 16686416 [TBL] [Abstract][Full Text] [Related]
16. Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex. Vetter RJ; Williams JC; Hetke JF; Nunamaker EA; Kipke DR IEEE Trans Biomed Eng; 2004 Jun; 51(6):896-904. PubMed ID: 15188856 [TBL] [Abstract][Full Text] [Related]
17. Three- and four-dimensional mapping of speech and language in patients with epilepsy. Nakai Y; Jeong JW; Brown EC; Rothermel R; Kojima K; Kambara T; Shah A; Mittal S; Sood S; Asano E Brain; 2017 May; 140(5):1351-1370. PubMed ID: 28334963 [TBL] [Abstract][Full Text] [Related]
18. A silicon based implantable microelectrode array for electrophysiological and dopamine recording from cortex to striatum in the non-human primate brain. Zhang S; Song Y; Wang M; Zhang Z; Fan X; Song X; Zhuang P; Yue F; Chan P; Cai X Biosens Bioelectron; 2016 Nov; 85():53-61. PubMed ID: 27155116 [TBL] [Abstract][Full Text] [Related]
19. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Viventi J; Kim DH; Vigeland L; Frechette ES; Blanco JA; Kim YS; Avrin AE; Tiruvadi VR; Hwang SW; Vanleer AC; Wulsin DF; Davis K; Gelber CE; Palmer L; Van der Spiegel J; Wu J; Xiao J; Huang Y; Contreras D; Rogers JA; Litt B Nat Neurosci; 2011 Nov; 14(12):1599-605. PubMed ID: 22081157 [TBL] [Abstract][Full Text] [Related]