BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 27088302)

  • 1. PBSA_E: A PBSA-Based Free Energy Estimator for Protein-Ligand Binding Affinity.
    Liu X; Liu J; Zhu T; Zhang L; He X; Zhang JZ
    J Chem Inf Model; 2016 May; 56(5):854-61. PubMed ID: 27088302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An accurate free energy estimator: based on MM/PBSA combined with interaction entropy for protein-ligand binding affinity.
    Huang K; Luo S; Cong Y; Zhong S; Zhang JZH; Duan L
    Nanoscale; 2020 May; 12(19):10737-10750. PubMed ID: 32388542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the scoring of protein-ligand binding affinity by including the effects of structural water and electronic polarization.
    Liu J; He X; Zhang JZ
    J Chem Inf Model; 2013 Jun; 53(6):1306-14. PubMed ID: 23651068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating the performance of MM/PBSA for binding affinity prediction using class A GPCR crystal structures.
    Yau MQ; Emtage AL; Chan NJY; Doughty SW; Loo JSE
    J Comput Aided Mol Des; 2019 May; 33(5):487-496. PubMed ID: 30989574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of an automated procedure for the prediction of relative free energies of binding on a set of aldose reductase inhibitors.
    Ferrari AM; Degliesposti G; Sgobba M; Rastelli G
    Bioorg Med Chem; 2007 Dec; 15(24):7865-77. PubMed ID: 17870536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Including explicit water molecules as part of the protein structure in MM/PBSA calculations.
    Zhu YL; Beroza P; Artis DR
    J Chem Inf Model; 2014 Feb; 54(2):462-9. PubMed ID: 24432790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Approximation of Ligand Rotational and Translational Entropy Changes upon Binding for Use in MM-PBSA Calculations.
    Ben-Shalom IY; Pfeiffer-Marek S; Baringhaus KH; Gohlke H
    J Chem Inf Model; 2017 Feb; 57(2):170-189. PubMed ID: 27996253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid estimation of relative protein-ligand binding affinities using a high-throughput version of MM-PBSA.
    Brown SP; Muchmore SW
    J Chem Inf Model; 2007; 47(4):1493-503. PubMed ID: 17518461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the Performance of Screening MM/PBSA in Protein-Ligand Interactions.
    Zhu YX; Sheng YJ; Ma YQ; Ding HM
    J Phys Chem B; 2022 Mar; 126(8):1700-1708. PubMed ID: 35188781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of MM-PBSA rescoring of docking poses.
    Thompson DC; Humblet C; Joseph-McCarthy D
    J Chem Inf Model; 2008 May; 48(5):1081-91. PubMed ID: 18465849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation and use of the MM-PBSA approach for drug discovery.
    Kuhn B; Gerber P; Schulz-Gasch T; Stahl M
    J Med Chem; 2005 Jun; 48(12):4040-8. PubMed ID: 15943477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput calculation of protein-ligand binding affinities: modification and adaptation of the MM-PBSA protocol to enterprise grid computing.
    Brown SP; Muchmore SW
    J Chem Inf Model; 2006; 46(3):999-1005. PubMed ID: 16711718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking.
    Hou T; Wang J; Li Y; Wang W
    J Comput Chem; 2011 Apr; 32(5):866-77. PubMed ID: 20949517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design.
    Wang E; Sun H; Wang J; Wang Z; Liu H; Zhang JZH; Hou T
    Chem Rev; 2019 Aug; 119(16):9478-9508. PubMed ID: 31244000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free energy calculations to estimate ligand-binding affinities in structure-based drug design.
    Reddy MR; Reddy CR; Rathore RS; Erion MD; Aparoy P; Reddy RN; Reddanna P
    Curr Pharm Des; 2014; 20(20):3323-37. PubMed ID: 23947646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PHOENIX: a scoring function for affinity prediction derived using high-resolution crystal structures and calorimetry measurements.
    Tang YT; Marshall GR
    J Chem Inf Model; 2011 Feb; 51(2):214-28. PubMed ID: 21214225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards predictive ligand design with free-energy based computational methods?
    Foloppe N; Hubbard R
    Curr Med Chem; 2006; 13(29):3583-608. PubMed ID: 17168725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating the molecular mechanics poisson-boltzmann surface area free energy method using a congeneric series of ligands to p38 MAP kinase.
    Pearlman DA
    J Med Chem; 2005 Dec; 48(24):7796-807. PubMed ID: 16302819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA.
    Wang J; Morin P; Wang W; Kollman PA
    J Am Chem Soc; 2001 Jun; 123(22):5221-30. PubMed ID: 11457384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set.
    Sun H; Li Y; Tian S; Xu L; Hou T
    Phys Chem Chem Phys; 2014 Aug; 16(31):16719-29. PubMed ID: 24999761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.