These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 27088302)
1. PBSA_E: A PBSA-Based Free Energy Estimator for Protein-Ligand Binding Affinity. Liu X; Liu J; Zhu T; Zhang L; He X; Zhang JZ J Chem Inf Model; 2016 May; 56(5):854-61. PubMed ID: 27088302 [TBL] [Abstract][Full Text] [Related]
2. An accurate free energy estimator: based on MM/PBSA combined with interaction entropy for protein-ligand binding affinity. Huang K; Luo S; Cong Y; Zhong S; Zhang JZH; Duan L Nanoscale; 2020 May; 12(19):10737-10750. PubMed ID: 32388542 [TBL] [Abstract][Full Text] [Related]
3. Improving the scoring of protein-ligand binding affinity by including the effects of structural water and electronic polarization. Liu J; He X; Zhang JZ J Chem Inf Model; 2013 Jun; 53(6):1306-14. PubMed ID: 23651068 [TBL] [Abstract][Full Text] [Related]
4. Evaluating the performance of MM/PBSA for binding affinity prediction using class A GPCR crystal structures. Yau MQ; Emtage AL; Chan NJY; Doughty SW; Loo JSE J Comput Aided Mol Des; 2019 May; 33(5):487-496. PubMed ID: 30989574 [TBL] [Abstract][Full Text] [Related]
5. Validation of an automated procedure for the prediction of relative free energies of binding on a set of aldose reductase inhibitors. Ferrari AM; Degliesposti G; Sgobba M; Rastelli G Bioorg Med Chem; 2007 Dec; 15(24):7865-77. PubMed ID: 17870536 [TBL] [Abstract][Full Text] [Related]
6. Including explicit water molecules as part of the protein structure in MM/PBSA calculations. Zhu YL; Beroza P; Artis DR J Chem Inf Model; 2014 Feb; 54(2):462-9. PubMed ID: 24432790 [TBL] [Abstract][Full Text] [Related]
7. Efficient Approximation of Ligand Rotational and Translational Entropy Changes upon Binding for Use in MM-PBSA Calculations. Ben-Shalom IY; Pfeiffer-Marek S; Baringhaus KH; Gohlke H J Chem Inf Model; 2017 Feb; 57(2):170-189. PubMed ID: 27996253 [TBL] [Abstract][Full Text] [Related]
8. Rapid estimation of relative protein-ligand binding affinities using a high-throughput version of MM-PBSA. Brown SP; Muchmore SW J Chem Inf Model; 2007; 47(4):1493-503. PubMed ID: 17518461 [TBL] [Abstract][Full Text] [Related]
9. Assessing the Performance of Screening MM/PBSA in Protein-Ligand Interactions. Zhu YX; Sheng YJ; Ma YQ; Ding HM J Phys Chem B; 2022 Mar; 126(8):1700-1708. PubMed ID: 35188781 [TBL] [Abstract][Full Text] [Related]
10. Investigation of MM-PBSA rescoring of docking poses. Thompson DC; Humblet C; Joseph-McCarthy D J Chem Inf Model; 2008 May; 48(5):1081-91. PubMed ID: 18465849 [TBL] [Abstract][Full Text] [Related]
11. Validation and use of the MM-PBSA approach for drug discovery. Kuhn B; Gerber P; Schulz-Gasch T; Stahl M J Med Chem; 2005 Jun; 48(12):4040-8. PubMed ID: 15943477 [TBL] [Abstract][Full Text] [Related]
12. High-throughput calculation of protein-ligand binding affinities: modification and adaptation of the MM-PBSA protocol to enterprise grid computing. Brown SP; Muchmore SW J Chem Inf Model; 2006; 46(3):999-1005. PubMed ID: 16711718 [TBL] [Abstract][Full Text] [Related]
13. Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking. Hou T; Wang J; Li Y; Wang W J Comput Chem; 2011 Apr; 32(5):866-77. PubMed ID: 20949517 [TBL] [Abstract][Full Text] [Related]
14. End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. Wang E; Sun H; Wang J; Wang Z; Liu H; Zhang JZH; Hou T Chem Rev; 2019 Aug; 119(16):9478-9508. PubMed ID: 31244000 [TBL] [Abstract][Full Text] [Related]
15. Free energy calculations to estimate ligand-binding affinities in structure-based drug design. Reddy MR; Reddy CR; Rathore RS; Erion MD; Aparoy P; Reddy RN; Reddanna P Curr Pharm Des; 2014; 20(20):3323-37. PubMed ID: 23947646 [TBL] [Abstract][Full Text] [Related]
16. PHOENIX: a scoring function for affinity prediction derived using high-resolution crystal structures and calorimetry measurements. Tang YT; Marshall GR J Chem Inf Model; 2011 Feb; 51(2):214-28. PubMed ID: 21214225 [TBL] [Abstract][Full Text] [Related]
17. Towards predictive ligand design with free-energy based computational methods? Foloppe N; Hubbard R Curr Med Chem; 2006; 13(29):3583-608. PubMed ID: 17168725 [TBL] [Abstract][Full Text] [Related]
18. Evaluating the molecular mechanics poisson-boltzmann surface area free energy method using a congeneric series of ligands to p38 MAP kinase. Pearlman DA J Med Chem; 2005 Dec; 48(24):7796-807. PubMed ID: 16302819 [TBL] [Abstract][Full Text] [Related]
19. Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. Wang J; Morin P; Wang W; Kollman PA J Am Chem Soc; 2001 Jun; 123(22):5221-30. PubMed ID: 11457384 [TBL] [Abstract][Full Text] [Related]
20. Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Sun H; Li Y; Tian S; Xu L; Hou T Phys Chem Chem Phys; 2014 Aug; 16(31):16719-29. PubMed ID: 24999761 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]