BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 27088355)

  • 1. Sub-Chronic Neuropathological and Biochemical Changes in Mouse Visual System after Repetitive Mild Traumatic Brain Injury.
    Tzekov R; Dawson C; Orlando M; Mouzon B; Reed J; Evans J; Crynen G; Mullan M; Crawford F
    PLoS One; 2016; 11(4):e0153608. PubMed ID: 27088355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repetitive mild traumatic brain injury causes optic nerve and retinal damage in a mouse model.
    Tzekov R; Quezada A; Gautier M; Biggins D; Frances C; Mouzon B; Jamison J; Mullan M; Crawford F
    J Neuropathol Exp Neurol; 2014 Apr; 73(4):345-61. PubMed ID: 24607965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repetitive mild traumatic brain injury with impact acceleration in the mouse: Multifocal axonopathy, neuroinflammation, and neurodegeneration in the visual system.
    Xu L; Nguyen JV; Lehar M; Menon A; Rha E; Arena J; Ryu J; Marsh-Armstrong N; Marmarou CR; Koliatsos VE
    Exp Neurol; 2016 Jan; 275 Pt 3():436-449. PubMed ID: 25450468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An augmentation in histone dimethylation at lysine nine residues elicits vision impairment following traumatic brain injury.
    Gupta R; Saha P; Sen T; Sen N
    Free Radic Biol Med; 2019 Apr; 134():630-643. PubMed ID: 30790655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inflammatory changes in optic nerve after closed-head repeated traumatic brain injury: Preliminary study.
    Tzekov R; Phifer J; Myers A; Mouzon B; Crawford F
    Brain Inj; 2016; 30(12):1428-1435. PubMed ID: 27834542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for accelerated tauopathy in the retina of transgenic P301S tau mice exposed to repetitive mild traumatic brain injury.
    Xu L; Ryu J; Nguyen JV; Arena J; Rha E; Vranis P; Hitt D; Marsh-Armstrong N; Koliatsos VE
    Exp Neurol; 2015 Nov; 273():168-76. PubMed ID: 26311071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of inducible heat shock proteins Hsp27 and Hsp70 in the visual pathway of rats subjected to various models of retinal ganglion cell injury.
    Chidlow G; Wood JP; Casson RJ
    PLoS One; 2014; 9(12):e114838. PubMed ID: 25535743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early detection of subclinical visual damage after blast-mediated TBI enables prevention of chronic visual deficit by treatment with P7C3-S243.
    Dutca LM; Stasheff SF; Hedberg-Buenz A; Rudd DS; Batra N; Blodi FR; Yorek MS; Yin T; Shankar M; Herlein JA; Naidoo J; Morlock L; Williams N; Kardon RH; Anderson MG; Pieper AA; Harper MM
    Invest Ophthalmol Vis Sci; 2014 Dec; 55(12):8330-41. PubMed ID: 25468886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amelioration of visual deficits and visual system pathology after mild TBI with the cannabinoid type-2 receptor inverse agonist SMM-189.
    Guley NM; Del Mar NA; Ragsdale T; Li C; Perry AM; Moore BM; Honig MG; Reiner A
    Exp Eye Res; 2019 May; 182():109-124. PubMed ID: 30922891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Axotomy-induced retinal ganglion cell death in adult mice: quantitative and topographic time course analyses.
    Galindo-Romero C; Avilés-Trigueros M; Jiménez-López M; Valiente-Soriano FJ; Salinas-Navarro M; Nadal-Nicolás F; Villegas-Pérez MP; Vidal-Sanz M; Agudo-Barriuso M
    Exp Eye Res; 2011 May; 92(5):377-87. PubMed ID: 21354138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative retinal protein analysis after optic nerve transection reveals a neuroprotective role for hepatoma-derived growth factor on injured retinal ganglion cells.
    Hollander A; D'Onofrio PM; Magharious MM; Lysko MD; Koeberle PD
    Invest Ophthalmol Vis Sci; 2012 Jun; 53(7):3973-89. PubMed ID: 22531700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optic nerve diffusion changes and atrophy jointly predict visual dysfunction after optic neuritis.
    Kolbe S; Chapman C; Nguyen T; Bajraszewski C; Johnston L; Kean M; Mitchell P; Paine M; Butzkueven H; Kilpatrick T; Egan G
    Neuroimage; 2009 Apr; 45(3):679-86. PubMed ID: 19162205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oligodendrocyte dysfunction after induction of experimental anterior optic nerve ischemia.
    Goldenberg-Cohen N; Guo Y; Margolis F; Cohen Y; Miller NR; Bernstein SL
    Invest Ophthalmol Vis Sci; 2005 Aug; 46(8):2716-25. PubMed ID: 16043843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repetitive mild traumatic brain injury in a mouse model produces learning and memory deficits accompanied by histological changes.
    Mouzon B; Chaytow H; Crynen G; Bachmeier C; Stewart J; Mullan M; Stewart W; Crawford F
    J Neurotrauma; 2012 Dec; 29(18):2761-73. PubMed ID: 22900595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of inner retina dysfunction and progressive ganglion cell loss in a mouse model of glaucoma.
    Pérez de Lara MJ; Santano C; Guzmán-Aránguez A; Valiente-Soriano FJ; Avilés-Trigueros M; Vidal-Sanz M; de la Villa P; Pintor J
    Exp Eye Res; 2014 May; 122():40-9. PubMed ID: 24631335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Caspase-7: a critical mediator of optic nerve injury-induced retinal ganglion cell death.
    Choudhury S; Liu Y; Clark AF; Pang IH
    Mol Neurodegener; 2015 Aug; 10():40. PubMed ID: 26306916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuron stress and loss following rodent anterior ischemic optic neuropathy in double-reporter transgenic mice.
    Bernstein SL; Guo Y; Slater BJ; Puche A; Kelman SE
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):2304-10. PubMed ID: 17460295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low intensity repetitive transcranial magnetic stimulation does not induce cell survival or regeneration in a mouse optic nerve crush model.
    Tang AD; Makowiecki K; Bartlett C; Rodger J
    PLoS One; 2015; 10(5):e0126949. PubMed ID: 25993112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of brain-derived neurotrophic factor on mouse axotomized retinal ganglion cells and phagocytic microglia.
    Galindo-Romero C; Valiente-Soriano FJ; Jiménez-López M; García-Ayuso D; Villegas-Pérez MP; Vidal-Sanz M; Agudo-Barriuso M
    Invest Ophthalmol Vis Sci; 2013 Feb; 54(2):974-85. PubMed ID: 23307961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathologic changes in chronic intraorbital optic nerve damage in rabbits.
    Cai J; Cheng J; Huang X; Li Y; Ma X; Li Y; Wei R
    Brain Res; 2009 Apr; 1267():103-15. PubMed ID: 19230826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.