BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

872 related articles for article (PubMed ID: 27088368)

  • 1. Using carbon nanotubes-gold nanocomposites to quench energy from pinnate titanium dioxide nanorods array for signal-on photoelectrochemical aptasensing.
    Deng W; Shen L; Wang X; Yang C; Yu J; Yan M; Song X
    Biosens Bioelectron; 2016 Aug; 82():132-9. PubMed ID: 27088368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using graphene-based plasmonic nanocomposites to quench energy from quantum dots for signal-on photoelectrochemical aptasensing.
    Zeng X; Ma S; Bao J; Tu W; Dai Z
    Anal Chem; 2013 Dec; 85(24):11720-4. PubMed ID: 24256069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoelectrochemical aptasensing of ofloxacin based on the use of a TiO
    Qin X; Geng L; Wang Q; Wang Y
    Mikrochim Acta; 2019 Jun; 186(7):430. PubMed ID: 31187249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ZnO flower-rod/g-C
    Han Z; Luo M; Weng Q; Chen L; Chen J; Li C; Zhou Y; Wang L
    Anal Bioanal Chem; 2018 Oct; 410(25):6529-6538. PubMed ID: 30027318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold nanrods plasmon-enhanced photoelectrochemical aptasensing based on hematite/N-doped graphene films for ultrasensitive analysis of 17β-estradiol.
    Du X; Dai L; Jiang D; Li H; Hao N; You T; Mao H; Wang K
    Biosens Bioelectron; 2017 May; 91():706-713. PubMed ID: 28126660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An electrochemical aptasensor based on TiO2/MWCNT and a novel synthesized Schiff base nanocomposite for the ultrasensitive detection of thrombin.
    Heydari-Bafrooei E; Amini M; Ardakani MH
    Biosens Bioelectron; 2016 Nov; 85():828-836. PubMed ID: 27295570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA sequence functionalized with heterogeneous core-satellite nanoassembly for novel energy-transfer-based photoelectrochemical bioanalysis.
    Zhu YC; Xu F; Zhang N; Zhao WW; Xu JJ; Chen HY
    Biosens Bioelectron; 2017 May; 91():293-298. PubMed ID: 28033558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding-induced formation of DNAzyme on an Au@Ag nanoparticles/TiO
    Zhang L; Shi XM; Xu YT; Fan GC; Yu XD; Liang YY; Zhao WW
    Biosens Bioelectron; 2019 Jun; 134():103-108. PubMed ID: 30959391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased electrocatalyzed performance through hairpin oligonucleotide aptamer-functionalized gold nanorods labels and graphene-streptavidin nanomatrix: Highly selective and sensitive electrochemical biosensor of carcinoembryonic antigen.
    Wen W; Huang JY; Bao T; Zhou J; Xia HX; Zhang XH; Wang SF; Zhao YD
    Biosens Bioelectron; 2016 Sep; 83():142-8. PubMed ID: 27111123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilization-free photoelectrochemical aptasensor for environmental pollutants: Design, fabrication and mechanism.
    Sun C; Liu M; Sun H; Lu H; Zhao G
    Biosens Bioelectron; 2019 Sep; 140():111352. PubMed ID: 31163397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A photoelectrochemical aptasensor for aflatoxin B1 detection based on an energy transfer strategy between Ce-TiO
    Tang Y; Liu X; Zheng H; Yang L; Li L; Zhang S; Zhou Y; Alwarappan S
    Nanoscale; 2019 May; 11(18):9115-9124. PubMed ID: 31026012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple "signal-on" photoelectrochemical aptasensor for ultrasensitive detecting AFB1 based on electrochemically reduced graphene oxide/poly(5-formylindole)/Au nanocomposites.
    Zhang B; Lu Y; Yang C; Guo Q; Nie G
    Biosens Bioelectron; 2019 Jun; 134():42-48. PubMed ID: 30954925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using reduced graphene oxide-Ca:CdSe nanocomposite to enhance photoelectrochemical activity of gold nanoparticles functionalized tungsten oxide for highly sensitive prostate specific antigen detection.
    Wang X; Xu R; Sun X; Wang Y; Ren X; Du B; Wu D; Wei Q
    Biosens Bioelectron; 2017 Oct; 96():239-245. PubMed ID: 28500948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-Infrared-to-Ultraviolet Light-Mediated Photoelectrochemical Aptasensing Platform for Cancer Biomarker Based on Core-Shell NaYF
    Qiu Z; Shu J; Tang D
    Anal Chem; 2018 Jan; 90(1):1021-1028. PubMed ID: 29171254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exciton-Plasmon Interaction between AuNPs/Graphene Nanohybrids and CdS Quantum Dots/TiO
    Cai G; Yu Z; Ren R; Tang D
    ACS Sens; 2018 Mar; 3(3):632-639. PubMed ID: 29465232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoelectrochemical immunosensor based on CdSe@BiVO
    Xie Y; Zhang M; Bin Q; Xie S; Guo L; Cheng F; Lv W
    Biosens Bioelectron; 2020 Feb; 150():111949. PubMed ID: 31929086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoelectrochemical aptasensor for thrombin based on Au-rGO-CuS as signal amplification elements.
    Zou L; Yang L; Zhan Y; Huang D; Ye B
    Mikrochim Acta; 2020 Jul; 187(8):433. PubMed ID: 32638089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A surface plasmon resonance enhanced photoelectrochemical immunoassay based on perovskite metal oxide@gold nanoparticle heterostructures.
    Zhang L; Luo Z; Su L; Tang D
    Analyst; 2019 Oct; 144(19):5717-5723. PubMed ID: 31482883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of an ultrasensitive and selective electrochemical aptasensor to detect carcinoembryonic antigen by using a new nanocomposite.
    Mazloum-Ardakani M; Tavakolian-Ardakani Z; Sahraei N; Moshtaghioun SM
    Biosens Bioelectron; 2019 Mar; 129():1-6. PubMed ID: 30677696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen vacancies enhanced photoelectrochemical aptasensing of 2, 3', 5, 5'-tetrachlorobiphenyl amplified with Ag
    Zhang S; Zheng H; Sun Y; Li F; Li T; Liu X; Zhou Y; Chen W; Ju H
    Biosens Bioelectron; 2020 Nov; 167():112477. PubMed ID: 32810703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.