These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 27088548)

  • 41. Effect of production process scale-up on the characteristics and properties of bacterial nanocellulose obtained from overripe Banana culture medium.
    Molina-Ramírez C; Cañas-Gutiérrez A; Castro C; Zuluaga R; Gañán P
    Carbohydr Polym; 2020 Jul; 240():116341. PubMed ID: 32475595
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metal cation cross-linked nanocellulose hydrogels as tissue engineering substrates.
    Zander NE; Dong H; Steele J; Grant JT
    ACS Appl Mater Interfaces; 2014; 6(21):18502-10. PubMed ID: 25295848
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bacterial nanocellulose-IKVAV hydrogel matrix modulates melanoma tumor cell adhesion and proliferation and induces vasculogenic mimicry in vitro.
    Reis EMD; Berti FV; Colla G; Porto LM
    J Biomed Mater Res B Appl Biomater; 2018 Nov; 106(8):2741-2749. PubMed ID: 29206331
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of nanocellulose hydrogels for application in the food and biomedical industries: A review.
    Yu K; Yang L; Zhang N; Wang S; Liu H
    Int J Biol Macromol; 2024 Jun; 272(Pt 2):132668. PubMed ID: 38821305
    [TBL] [Abstract][Full Text] [Related]  

  • 45. From rotten grapes to industrial exploitation: Komagataeibacter europaeus SGP37, a micro-factory for macroscale production of bacterial nanocellulose.
    Dubey S; Sharma RK; Agarwal P; Singh J; Sinha N; Singh RP
    Int J Biol Macromol; 2017 Mar; 96():52-60. PubMed ID: 27939511
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In situ Study Unravels Bio-Nanomechanical Behavior in a Magnetic Bacterial Nano-cellulose (MBNC) Hydrogel for Neuro-Endovascular Reconstruction.
    Pavón JJ; Allain JP; Verma D; Echeverry-Rendón M; Cooper CL; Reece LM; Shetty AR; Tomar V
    Macromol Biosci; 2019 Feb; 19(2):e1800225. PubMed ID: 30451373
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Investigation into the structural, morphological, mechanical and thermal behaviour of bacterial cellulose after a two-step purification process.
    Gea S; Reynolds CT; Roohpour N; Wirjosentono B; Soykeabkaew N; Bilotti E; Peijs T
    Bioresour Technol; 2011 Oct; 102(19):9105-10. PubMed ID: 21835613
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A strategy of tailoring polymorphs and nanostructures to construct self-reinforced nonswelling high-strength bacterial cellulose hydrogels.
    Zhang M; Chen S; Sheng N; Wang B; Yao J; Wu Z; Wang H
    Nanoscale; 2019 Aug; 11(32):15347-15358. PubMed ID: 31386746
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1.
    Abol-Fotouh D; Hassan MA; Shokry H; Roig A; Azab MS; Kashyout AEB
    Sci Rep; 2020 Feb; 10(1):3491. PubMed ID: 32103077
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Robust All-Cellulose Nanofiber Composite from Stack-Up Bacterial Cellulose Hydrogels via Self-Aggregation Forces.
    Li Z; Li X; Ren J; Wu B; Luo Q; Liu X; Pei C
    J Agric Food Chem; 2020 Mar; 68(9):2696-2701. PubMed ID: 32031789
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bacterial nanocellulose as a corneal bandage material: a comparison with amniotic membrane.
    Anton-Sales I; D'Antin JC; Fernández-Engroba J; Charoenrook V; Laromaine A; Roig A; Michael R
    Biomater Sci; 2020 May; 8(10):2921-2930. PubMed ID: 32314754
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nanofibrillated cellulose composite hydrogel for the replacement of the nucleus pulposus.
    Borges AC; Eyholzer C; Duc F; Bourban PE; Tingaut P; Zimmermann T; Pioletti DP; Månson JA
    Acta Biomater; 2011 Sep; 7(9):3412-21. PubMed ID: 21651996
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bioconversion of Waste Fiber Sludge to Bacterial Nanocellulose and Use for Reinforcement of CTMP Paper Sheets.
    Chen G; Wu G; Alriksson B; Wang W; Hong FF; Jönsson LJ
    Polymers (Basel); 2017 Sep; 9(9):. PubMed ID: 30965761
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of the ex situ physical and in situ chemical modification of bacterial nanocellulose on mechanical properties in the context of its potential applications in heart valve design.
    Stanisławska A; Szkodo M; Staroszczyk H; Dawidowska K; Kołaczkowska M; Siondalski P
    Int J Biol Macromol; 2024 Jun; 269(Pt 1):131951. PubMed ID: 38710253
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bacterial nanocellulose: Reinforcement of compressive strength using an adapted Mobile Matrix Reservoir Technology and suitable post-modification strategies.
    Rothe H; Rost J; Kramer F; Alkhatib Y; Petzold-Welcke K; Klemm D; Fischer D; Liefeith K
    J Mech Behav Biomed Mater; 2022 Jan; 125():104978. PubMed ID: 34837799
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Robust versatile nanocellulose/polyvinyl alcohol/carbon dot hydrogels for biomechanical sensing.
    Wang Z; Cheng F; Cai H; Li X; Sun J; Wu Y; Wang N; Zhu Y
    Carbohydr Polym; 2021 May; 259():117753. PubMed ID: 33674007
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications.
    Du H; Liu W; Zhang M; Si C; Zhang X; Li B
    Carbohydr Polym; 2019 Apr; 209():130-144. PubMed ID: 30732792
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine.
    Moritz S; Wiegand C; Wesarg F; Hessler N; Müller FA; Kralisch D; Hipler UC; Fischer D
    Int J Pharm; 2014 Aug; 471(1-2):45-55. PubMed ID: 24792978
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stable composite of bacterial nanocellulose and perforated polypropylene mesh for biomedical applications.
    Ludwicka K; Kolodziejczyk M; Gendaszewska-Darmach E; Chrzanowski M; Jedrzejczak-Krzepkowska M; Rytczak P; Bielecki S
    J Biomed Mater Res B Appl Biomater; 2019 May; 107(4):978-987. PubMed ID: 30261126
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity.
    Peng N; Wang Y; Ye Q; Liang L; An Y; Li Q; Chang C
    Carbohydr Polym; 2016 Feb; 137():59-64. PubMed ID: 26686105
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.