BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 27088801)

  • 1. Distinct subpopulations of FOXD1 stroma-derived cells regulate renal erythropoietin.
    Kobayashi H; Liu Q; Binns TC; Urrutia AA; Davidoff O; Kapitsinou PP; Pfaff AS; Olauson H; Wernerson A; Fogo AB; Fong GH; Gross KW; Haase VH
    J Clin Invest; 2016 May; 126(5):1926-38. PubMed ID: 27088801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypoxia-inducible factor prolyl-4-hydroxylation in FOXD1 lineage cells is essential for normal kidney development.
    Kobayashi H; Liu J; Urrutia AA; Burmakin M; Ishii K; Rajan M; Davidoff O; Saifudeen Z; Haase VH
    Kidney Int; 2017 Dec; 92(6):1370-1383. PubMed ID: 28847650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prolyl-4-hydroxylases 2 and 3 control erythropoietin production in renin-expressing cells of mouse kidneys.
    Broeker KAE; Fuchs MAA; Schrankl J; Lehrmann C; Schley G; Todorov VT; Hugo C; Wagner C; Kurtz A
    J Physiol; 2022 Feb; 600(3):671-694. PubMed ID: 34863041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prolyl-4-hydroxylase 2 and 3 coregulate murine erythropoietin in brain pericytes.
    Urrutia AA; Afzal A; Nelson J; Davidoff O; Gross KW; Haase VH
    Blood; 2016 Nov; 128(21):2550-2560. PubMed ID: 27683416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypoxia Signaling Cascade for Erythropoietin Production in Hepatocytes.
    Tojo Y; Sekine H; Hirano I; Pan X; Souma T; Tsujita T; Kawaguchi S; Takeda N; Takeda K; Fong GH; Dan T; Ichinose M; Miyata T; Yamamoto M; Suzuki N
    Mol Cell Biol; 2015 Aug; 35(15):2658-72. PubMed ID: 26012551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of HIF-prolyl 4-hydroxylases 1, 2 and 3 in NG2-expressing cells induces HIF2-mediated neurovascular expansion independent of erythropoietin.
    Urrutia AA; Guan N; Mesa-Ciller C; Afzal A; Davidoff O; Haase VH
    Acta Physiol (Oxf); 2021 Jan; 231(1):e13547. PubMed ID: 32846048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactivation of hepatic EPO synthesis in mice after PHD loss.
    Minamishima YA; Kaelin WG
    Science; 2010 Jul; 329(5990):407. PubMed ID: 20651146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of adult erythropoiesis by prolyl hydroxylase domain proteins.
    Takeda K; Aguila HL; Parikh NS; Li X; Lamothe K; Duan LJ; Takeda H; Lee FS; Fong GH
    Blood; 2008 Mar; 111(6):3229-35. PubMed ID: 18056838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen-regulated expression of the erythropoietin gene in the human renal cell line REPC.
    Frede S; Freitag P; Geuting L; Konietzny R; Fandrey J
    Blood; 2011 May; 117(18):4905-14. PubMed ID: 21406725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HIF-1α is a protective factor in conditional PHD2-deficient mice suffering from severe HIF-2α-induced excessive erythropoiesis.
    Franke K; Kalucka J; Mamlouk S; Singh RP; Muschter A; Weidemann A; Iyengar V; Jahn S; Wieczorek K; Geiger K; Muders M; Sykes AM; Poitz DM; Ripich T; Otto T; Bergmann S; Breier G; Baretton G; Fong GH; Greaves DR; Bornstein S; Chavakis T; Fandrey J; Gassmann M; Wielockx B
    Blood; 2013 Feb; 121(8):1436-45. PubMed ID: 23264599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrity of the prolyl hydroxylase domain protein 2:erythropoietin pathway in aging mice.
    Li X; Sutherland S; Takeda K; Fong GH; Lee FS
    Blood Cells Mol Dis; 2010 Jun; 45(1):9-19. PubMed ID: 20400342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of Endothelial PHD2 Suppresses Post-Ischemic Kidney Inflammation through Hypoxia-Inducible Factor-1.
    Rajendran G; Schonfeld MP; Tiwari R; Huang S; Torosyan R; Fields T; Park J; Susztak K; Kapitsinou PP
    J Am Soc Nephrol; 2020 Mar; 31(3):501-516. PubMed ID: 31996410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of prolyl hydroxylases (PHDs) is selectively controlled by HIF-1 and HIF-2 proteins in nucleus pulposus cells of the intervertebral disc: distinct roles of PHD2 and PHD3 proteins in controlling HIF-1α activity in hypoxia.
    Fujita N; Markova D; Anderson DG; Chiba K; Toyama Y; Shapiro IM; Risbud MV
    J Biol Chem; 2012 May; 287(20):16975-86. PubMed ID: 22451659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of renal erythropoietin-producing (REP) cells in the maintenance of systemic oxygen homeostasis.
    Suzuki N; Yamamoto M
    Pflugers Arch; 2016 Jan; 468(1):3-12. PubMed ID: 26452589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dysregulation of the sensory and regulatory pathways controlling cellular iron metabolism in unilateral obstructive nephropathy.
    Votava JA; Reese SR; Deck KM; Nizzi CP; Anderson SA; Djamali A; Eisenstein RS
    Am J Physiol Renal Physiol; 2022 Jan; 322(1):F89-F103. PubMed ID: 34843656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EPO synthesis induced by HIF-PHD inhibition is dependent on myofibroblast transdifferentiation and colocalizes with non-injured nephron segments in murine kidney fibrosis.
    Kobayashi H; Davidoff O; Pujari-Palmer S; Drevin M; Haase VH
    Acta Physiol (Oxf); 2022 Aug; 235(4):e13826. PubMed ID: 35491502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for binding of the renal carcinoma target hypoxia-inducible factor 2α to prolyl hydroxylase domain 2.
    Figg WD; Fiorini G; Chowdhury R; Nakashima Y; Tumber A; McDonough MA; Schofield CJ
    Proteins; 2023 Nov; 91(11):1510-1524. PubMed ID: 37449559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypoxia-induced erythropoietin production: a paradigm for oxygen-regulated gene expression.
    Stockmann C; Fandrey J
    Clin Exp Pharmacol Physiol; 2006 Oct; 33(10):968-79. PubMed ID: 17002676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypoxia-inducible factor regulates hepcidin via erythropoietin-induced erythropoiesis.
    Liu Q; Davidoff O; Niss K; Haase VH
    J Clin Invest; 2012 Dec; 122(12):4635-44. PubMed ID: 23114598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prolyl hydroxylases 2 and 3 act in gliomas as protective negative feedback regulators of hypoxia-inducible factors.
    Henze AT; Riedel J; Diem T; Wenner J; Flamme I; Pouyseggur J; Plate KH; Acker T
    Cancer Res; 2010 Jan; 70(1):357-66. PubMed ID: 20028863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.