BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 27088868)

  • 1. Conformal prediction to define applicability domain - A case study on predicting ER and AR binding.
    Norinder U; Rybacka A; Andersson PL
    SAR QSAR Environ Res; 2016 Apr; 27(4):303-16. PubMed ID: 27088868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational models to predict endocrine-disrupting chemical binding with androgen or oestrogen receptors.
    Chen Y; Cheng F; Sun L; Li W; Liu G; Tang Y
    Ecotoxicol Environ Saf; 2014 Dec; 110():280-7. PubMed ID: 25282305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The importance of molecular structures, endpoints' values, and predictivity parameters in QSAR research: QSAR analysis of a series of estrogen receptor binders.
    Li J; Gramatica P
    Mol Divers; 2010 Nov; 14(4):687-96. PubMed ID: 19921452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Introducing conformal prediction in predictive modeling. A transparent and flexible alternative to applicability domain determination.
    Norinder U; Carlsson L; Boyer S; Eklund M
    J Chem Inf Model; 2014 Jun; 54(6):1596-603. PubMed ID: 24797111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human sex hormone-binding globulin binding affinities of 125 structurally diverse chemicals and comparison with their binding to androgen receptor, estrogen receptor, and α-fetoprotein.
    Hong H; Branham WS; Ng HW; Moland CL; Dial SL; Fang H; Perkins R; Sheehan D; Tong W
    Toxicol Sci; 2015 Feb; 143(2):333-48. PubMed ID: 25349334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SAR and QSAR modeling of endocrine disruptors.
    Devillers J; Marchand-Geneste N; Carpy A; Porcher JM
    SAR QSAR Environ Res; 2006 Aug; 17(4):393-412. PubMed ID: 16920661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of OASIS QSAR Models Using ToxCast™ in Vitro Estrogen and Androgen Receptor Binding Data and Application in an Integrated Endocrine Screening Approach.
    Bhhatarai B; Wilson DM; Price PS; Marty S; Parks AK; Carney E
    Environ Health Perspect; 2016 Sep; 124(9):1453-61. PubMed ID: 27152837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Introducing conformal prediction in predictive modeling for regulatory purposes. A transparent and flexible alternative to applicability domain determination.
    Norinder U; Carlsson L; Boyer S; Eklund M
    Regul Toxicol Pharmacol; 2015 Mar; 71(2):279-84. PubMed ID: 25559551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endocrine disruption: the noise in available data adversely impacts the models' performance.
    Lunghini F; Marcou G; Azam P; Bonachera F; Enrici MH; Van Miert E; Varnek A
    SAR QSAR Environ Res; 2021 Feb; 32(2):111-131. PubMed ID: 33461329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of estrogen receptor agonists and characterization of associated molecular descriptors by statistical learning methods.
    Li H; Ung CY; Yap CW; Xue Y; Li ZR; Chen YZ
    J Mol Graph Model; 2006 Nov; 25(3):313-23. PubMed ID: 16497524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and Validation of Decision Forest Model for Estrogen Receptor Binding Prediction of Chemicals Using Large Data Sets.
    Ng HW; Doughty SW; Luo H; Ye H; Ge W; Tong W; Hong H
    Chem Res Toxicol; 2015 Dec; 28(12):2343-51. PubMed ID: 26524122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification and virtual screening of androgen receptor antagonists.
    Li J; Gramatica P
    J Chem Inf Model; 2010 May; 50(5):861-74. PubMed ID: 20405856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A big data approach with artificial neural network and molecular similarity for chemical data mining and endocrine disruption prediction.
    Paulose R; Jegatheesan K; Balakrishnan GS
    Indian J Pharmacol; 2018; 50(4):169-176. PubMed ID: 30505052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volume learning algorithm significantly improved PLS model for predicting the estrogenic activity of xenoestrogens.
    Kovalishyn VV; Kholodovych V; Tetko IV; Welsh WJ
    J Mol Graph Model; 2007 Sep; 26(2):591-4. PubMed ID: 17433745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of prediction confidence and domain extrapolation of two structure-activity relationship models for predicting estrogen receptor binding activity.
    Tong W; Xie Q; Hong H; Shi L; Fang H; Perkins R
    Environ Health Perspect; 2004 Aug; 112(12):1249-54. PubMed ID: 15345371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformal Prediction Classification of a Large Data Set of Environmental Chemicals from ToxCast and Tox21 Estrogen Receptor Assays.
    Norinder U; Boyer S
    Chem Res Toxicol; 2016 Jun; 29(6):1003-10. PubMed ID: 27152554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Docking for Predictive Toxicology.
    Trisciuzzi D; Alberga D; Leonetti F; Novellino E; Nicolotti O; Mangiatordi GF
    Methods Mol Biol; 2018; 1800():181-197. PubMed ID: 29934893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing scientific confidence in HTS-derived prediction models: lessons learned from an endocrine case study.
    Cox LA; Popken D; Marty MS; Rowlands JC; Patlewicz G; Goyak KO; Becker RA
    Regul Toxicol Pharmacol; 2014 Aug; 69(3):443-50. PubMed ID: 24845243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binary classification of a large collection of environmental chemicals from estrogen receptor assays by quantitative structure-activity relationship and machine learning methods.
    Zang Q; Rotroff DM; Judson RS
    J Chem Inf Model; 2013 Dec; 53(12):3244-61. PubMed ID: 24279462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of in silico methods to analyze the toxicity and estrogen receptor-mediated properties of plant-derived phytochemicals.
    Kranthi Kumar K; Yugandhar P; Uma Devi B; Siva Kumar T; Savithramma N; Neeraja P
    Food Chem Toxicol; 2019 Mar; 125():361-369. PubMed ID: 30677443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.