These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 27089016)

  • 1. Enhanced electrochemical supercapacitance of binder-free nanoporous ternary metal oxides/metal electrode.
    Gao JJ; Qiu HJ; Wen YR; Chiang FK; Wang Y
    J Colloid Interface Sci; 2016 Jul; 474():18-24. PubMed ID: 27089016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible free-standing Ni-Mn oxide antenna decorated CNT/nanofiber membrane for high-volumetric capacitance supercapacitors.
    Fernando N; Chinnappan A; Aziz A; Abdelkader A; Ramakrishna S; Welland ME
    Nanoscale; 2021 Nov; 13(45):19038-19048. PubMed ID: 34757347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Layer by Layer Ex-Situ Deposited Cobalt-Manganese Oxide as Composite Electrode Material for Electrochemical Capacitor.
    Rusi ; Chan PY; Majid SR
    PLoS One; 2015; 10(7):e0129780. PubMed ID: 26158447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrothermally formed three-dimensional nanoporous Ni(OH)2 thin-film supercapacitors.
    Yang Y; Li L; Ruan G; Fei H; Xiang C; Fan X; Tour JM
    ACS Nano; 2014 Sep; 8(9):9622-8. PubMed ID: 25198148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nickel-Graphene Nanoplatelet Deposited on Carbon Fiber as Binder-Free Electrode for Electrochemical Supercapacitor Application.
    Yadav HM; Deb Nath NC; Kim J; Shinde SK; Ramesh S; Hossain F; Ibukun O; Lee JJ
    Polymers (Basel); 2020 Jul; 12(8):. PubMed ID: 32727000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct Reduction of Graphene Oxide by Ni Foam as a High-Capacitance Supercapacitor Electrode.
    Yang J; Zhang E; Li X; Yu Y; Qu J; Yu ZZ
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2297-305. PubMed ID: 26711186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-grown oxy-hydroxide@ nanoporous metal electrode for high-performance supercapacitors.
    Kang J; Hirata A; Qiu HJ; Chen L; Ge X; Fujita T; Chen M
    Adv Mater; 2014 Jan; 26(2):269-72. PubMed ID: 24129961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of Nanoporous Metals, Oxides, Carbides, and Sulfides: Beyond Nanocasting.
    Luc W; Jiao F
    Acc Chem Res; 2016 Jul; 49(7):1351-8. PubMed ID: 27294847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrathin and lightweight 3D free-standing Ni@NiO nanowire membrane electrode for a supercapacitor with excellent capacitance retention at high rates.
    Liu N; Li J; Ma W; Liu W; Shi Y; Tao J; Zhang X; Su J; Li L; Gao Y
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13627-34. PubMed ID: 25075868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A binder-free wet chemical synthesis approach to decorate nanoflowers of bismuth oxide on Ni-foam for fabricating laboratory scale potential pencil-type asymmetric supercapacitor device.
    Shinde NM; Xia QX; Yun JM; Singh S; Mane RS; Kim KH
    Dalton Trans; 2017 May; 46(20):6601-6611. PubMed ID: 28466915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extraordinary Supercapacitor Performance of a Multicomponent and Mixed-Valence Oxyhydroxide.
    Kang J; Hirata A; Chen L; Zhu S; Fujita T; Chen M
    Angew Chem Int Ed Engl; 2015 Jul; 54(28):8100-4. PubMed ID: 26014715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous nickel hydroxide-manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials.
    Chen H; Zhou S; Wu L
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8621-30. PubMed ID: 24797315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A sol-gel process for fabrication of NiO/NiCo2O4/Co3O4 composite with improved electrochemical behavior for electrochemical capacitors.
    Liu MC; Kong LB; Lu C; Li XM; Luo YC; Kang L
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4631-6. PubMed ID: 22924644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties.
    Shen L; Yu L; Wu HB; Yu XY; Zhang X; Lou XW
    Nat Commun; 2015 Mar; 6():6694. PubMed ID: 25798849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MOF-derived binary mixed metal/metal oxide @carbon nanoporous materials and their novel supercapacitive performances.
    Wang YC; Li WB; Zhao L; Xu BQ
    Phys Chem Chem Phys; 2016 Jul; 18(27):17941-8. PubMed ID: 27328374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A negative working potential supercapacitor electrode consisting of a continuous nanoporous Fe-Ni network.
    Xie Y; Chen Y; Zhou Y; Unruh KM; Xiao JQ
    Nanoscale; 2016 Jun; 8(23):11875-81. PubMed ID: 27232875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability.
    Guan C; Liu J; Wang Y; Mao L; Fan Z; Shen Z; Zhang H; Wang J
    ACS Nano; 2015 May; 9(5):5198-207. PubMed ID: 25868870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct access to metal or metal oxide nanocrystals integrated with one-dimensional nanoporous carbons for electrochemical energy storage.
    Liang Y; Schwab MG; Zhi L; Mugnaioli E; Kolb U; Feng X; Müllen K
    J Am Chem Soc; 2010 Oct; 132(42):15030-7. PubMed ID: 20886853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low cost facile synthesis of large-area cobalt hydroxide nanorods with remarkable pseudocapacitance.
    Deng MJ; Song CZ; Wang CC; Tseng YC; Chen JM; Lu KT
    ACS Appl Mater Interfaces; 2015 May; 7(17):9147-56. PubMed ID: 25874993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.