BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 27089393)

  • 1. A uniform survey of allele-specific binding and expression over 1000-Genomes-Project individuals.
    Chen J; Rozowsky J; Galeev TR; Harmanci A; Kitchen R; Bedford J; Abyzov A; Kong Y; Regan L; Gerstein M
    Nat Commun; 2016 Apr; 7():11101. PubMed ID: 27089393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep sequencing of Danish Holstein dairy cattle for variant detection and insight into potential loss-of-function variants in protein coding genes.
    Das A; Panitz F; Gregersen VR; Bendixen C; Holm LE
    BMC Genomics; 2015 Dec; 16():1043. PubMed ID: 26645365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimates of allele-specific expression in Drosophila with a single genome sequence and RNA-seq data.
    Quinn A; Juneja P; Jiggins FM
    Bioinformatics; 2014 Sep; 30(18):2603-10. PubMed ID: 24845654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current trend of annotating single nucleotide variation in humans--A case study on SNVrap.
    Li MJ; Wang J
    Methods; 2015 Jun; 79-80():32-40. PubMed ID: 25308971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. India Allele Finder: a web-based annotation tool for identifying common alleles in next-generation sequencing data of Indian origin.
    Zhang JF; James F; Shukla A; Girisha KM; Paciorkowski AR
    BMC Res Notes; 2017 Jun; 10(1):233. PubMed ID: 28655339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ABC: a tool to identify SNVs causing allele-specific transcription factor binding from ChIP-Seq experiments.
    Bailey SD; Virtanen C; Haibe-Kains B; Lupien M
    Bioinformatics; 2015 Sep; 31(18):3057-9. PubMed ID: 25995231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AlleleHMM: a data-driven method to identify allele specific differences in distributed functional genomic marks.
    Chou SP; Danko CG
    Nucleic Acids Res; 2019 Jun; 47(11):e64. PubMed ID: 30918970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic Analysis in the Age of Human Genome Sequencing.
    Lappalainen T; Scott AJ; Brandt M; Hall IM
    Cell; 2019 Mar; 177(1):70-84. PubMed ID: 30901550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AlleleSeq: analysis of allele-specific expression and binding in a network framework.
    Rozowsky J; Abyzov A; Wang J; Alves P; Raha D; Harmanci A; Leng J; Bjornson R; Kong Y; Kitabayashi N; Bhardwaj N; Rubin M; Snyder M; Gerstein M
    Mol Syst Biol; 2011 Aug; 7():522. PubMed ID: 21811232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high-quality cucumber genome assembly enhances computational comparative genomics.
    Osipowski P; Pawełkowicz M; Wojcieszek M; Skarzyńska A; Przybecki Z; Pląder W
    Mol Genet Genomics; 2020 Jan; 295(1):177-193. PubMed ID: 31620884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BrowserGenome.org: web-based RNA-seq data analysis and visualization.
    Schmid-Burgk JL; Hornung V
    Nat Methods; 2015 Nov; 12(11):1001. PubMed ID: 26513548
    [No Abstract]   [Full Text] [Related]  

  • 12. ASEQ: fast allele-specific studies from next-generation sequencing data.
    Romanel A; Lago S; Prandi D; Sboner A; Demichelis F
    BMC Med Genomics; 2015 Mar; 8():9. PubMed ID: 25889339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GERV: a statistical method for generative evaluation of regulatory variants for transcription factor binding.
    Zeng H; Hashimoto T; Kang DD; Gifford DK
    Bioinformatics; 2016 Feb; 32(4):490-6. PubMed ID: 26476779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NGS for Sequence Variants.
    Teng S
    Adv Exp Med Biol; 2016; 939():1-20. PubMed ID: 27807741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery of common sequences absent in the human reference genome using pooled samples from next generation sequencing.
    Liu Y; Koyutürk M; Maxwell S; Xiang M; Veigl M; Cooper RS; Tayo BO; Li L; LaFramboise T; Wang Z; Zhu X; Chance MR
    BMC Genomics; 2014 Aug; 15(1):685. PubMed ID: 25129063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. VAT: a computational framework to functionally annotate variants in personal genomes within a cloud-computing environment.
    Habegger L; Balasubramanian S; Chen DZ; Khurana E; Sboner A; Harmanci A; Rozowsky J; Clarke D; Snyder M; Gerstein M
    Bioinformatics; 2012 Sep; 28(17):2267-9. PubMed ID: 22743228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A robust (re-)annotation approach to generate unbiased mapping references for RNA-seq-based analyses of differential expression across closely related species.
    Torres-Oliva M; Almudi I; McGregor AP; Posnien N
    BMC Genomics; 2016 May; 17():392. PubMed ID: 27220689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prot2HG: a database of protein domains mapped to the human genome.
    Stanek D; Bis-Brewer DM; Saghira C; Danzi MC; Seeman P; Lassuthova P; Zuchner S
    Database (Oxford); 2020 Jan; 2020():. PubMed ID: 32293014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revising a personal genome by comparing and combining data from two different sequencing platforms.
    Kim D; Kim WY; Lee SY; Lee SY; Yun H; Shin SY; Lee J; Hong Y; Won Y; Kim SJ; Lee YS; Ahn SM
    PLoS One; 2013; 8(4):e60585. PubMed ID: 23593254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the function of genetic variants in the non-coding genomic regions: approaches for identifying human regulatory variants affecting gene expression.
    Li MJ; Yan B; Sham PC; Wang J
    Brief Bioinform; 2015 May; 16(3):393-412. PubMed ID: 24916300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.