These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 27089393)

  • 1. A uniform survey of allele-specific binding and expression over 1000-Genomes-Project individuals.
    Chen J; Rozowsky J; Galeev TR; Harmanci A; Kitchen R; Bedford J; Abyzov A; Kong Y; Regan L; Gerstein M
    Nat Commun; 2016 Apr; 7():11101. PubMed ID: 27089393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep sequencing of Danish Holstein dairy cattle for variant detection and insight into potential loss-of-function variants in protein coding genes.
    Das A; Panitz F; Gregersen VR; Bendixen C; Holm LE
    BMC Genomics; 2015 Dec; 16():1043. PubMed ID: 26645365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimates of allele-specific expression in Drosophila with a single genome sequence and RNA-seq data.
    Quinn A; Juneja P; Jiggins FM
    Bioinformatics; 2014 Sep; 30(18):2603-10. PubMed ID: 24845654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current trend of annotating single nucleotide variation in humans--A case study on SNVrap.
    Li MJ; Wang J
    Methods; 2015 Jun; 79-80():32-40. PubMed ID: 25308971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. India Allele Finder: a web-based annotation tool for identifying common alleles in next-generation sequencing data of Indian origin.
    Zhang JF; James F; Shukla A; Girisha KM; Paciorkowski AR
    BMC Res Notes; 2017 Jun; 10(1):233. PubMed ID: 28655339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ABC: a tool to identify SNVs causing allele-specific transcription factor binding from ChIP-Seq experiments.
    Bailey SD; Virtanen C; Haibe-Kains B; Lupien M
    Bioinformatics; 2015 Sep; 31(18):3057-9. PubMed ID: 25995231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AlleleHMM: a data-driven method to identify allele specific differences in distributed functional genomic marks.
    Chou SP; Danko CG
    Nucleic Acids Res; 2019 Jun; 47(11):e64. PubMed ID: 30918970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic Analysis in the Age of Human Genome Sequencing.
    Lappalainen T; Scott AJ; Brandt M; Hall IM
    Cell; 2019 Mar; 177(1):70-84. PubMed ID: 30901550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AlleleSeq: analysis of allele-specific expression and binding in a network framework.
    Rozowsky J; Abyzov A; Wang J; Alves P; Raha D; Harmanci A; Leng J; Bjornson R; Kong Y; Kitabayashi N; Bhardwaj N; Rubin M; Snyder M; Gerstein M
    Mol Syst Biol; 2011 Aug; 7():522. PubMed ID: 21811232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high-quality cucumber genome assembly enhances computational comparative genomics.
    Osipowski P; Pawełkowicz M; Wojcieszek M; Skarzyńska A; Przybecki Z; Pląder W
    Mol Genet Genomics; 2020 Jan; 295(1):177-193. PubMed ID: 31620884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BrowserGenome.org: web-based RNA-seq data analysis and visualization.
    Schmid-Burgk JL; Hornung V
    Nat Methods; 2015 Nov; 12(11):1001. PubMed ID: 26513548
    [No Abstract]   [Full Text] [Related]  

  • 12. ASEQ: fast allele-specific studies from next-generation sequencing data.
    Romanel A; Lago S; Prandi D; Sboner A; Demichelis F
    BMC Med Genomics; 2015 Mar; 8():9. PubMed ID: 25889339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GERV: a statistical method for generative evaluation of regulatory variants for transcription factor binding.
    Zeng H; Hashimoto T; Kang DD; Gifford DK
    Bioinformatics; 2016 Feb; 32(4):490-6. PubMed ID: 26476779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NGS for Sequence Variants.
    Teng S
    Adv Exp Med Biol; 2016; 939():1-20. PubMed ID: 27807741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery of common sequences absent in the human reference genome using pooled samples from next generation sequencing.
    Liu Y; Koyutürk M; Maxwell S; Xiang M; Veigl M; Cooper RS; Tayo BO; Li L; LaFramboise T; Wang Z; Zhu X; Chance MR
    BMC Genomics; 2014 Aug; 15(1):685. PubMed ID: 25129063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. VAT: a computational framework to functionally annotate variants in personal genomes within a cloud-computing environment.
    Habegger L; Balasubramanian S; Chen DZ; Khurana E; Sboner A; Harmanci A; Rozowsky J; Clarke D; Snyder M; Gerstein M
    Bioinformatics; 2012 Sep; 28(17):2267-9. PubMed ID: 22743228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A robust (re-)annotation approach to generate unbiased mapping references for RNA-seq-based analyses of differential expression across closely related species.
    Torres-Oliva M; Almudi I; McGregor AP; Posnien N
    BMC Genomics; 2016 May; 17():392. PubMed ID: 27220689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prot2HG: a database of protein domains mapped to the human genome.
    Stanek D; Bis-Brewer DM; Saghira C; Danzi MC; Seeman P; Lassuthova P; Zuchner S
    Database (Oxford); 2020 Jan; 2020():. PubMed ID: 32293014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revising a personal genome by comparing and combining data from two different sequencing platforms.
    Kim D; Kim WY; Lee SY; Lee SY; Yun H; Shin SY; Lee J; Hong Y; Won Y; Kim SJ; Lee YS; Ahn SM
    PLoS One; 2013; 8(4):e60585. PubMed ID: 23593254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the function of genetic variants in the non-coding genomic regions: approaches for identifying human regulatory variants affecting gene expression.
    Li MJ; Yan B; Sham PC; Wang J
    Brief Bioinform; 2015 May; 16(3):393-412. PubMed ID: 24916300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.