BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 27089954)

  • 1. Modeling the Complete Catalytic Cycle of Aspartoacylase.
    Kots ED; Khrenova MG; Lushchekina SV; Varfolomeev SD; Grigorenko BL; Nemukhin AV
    J Phys Chem B; 2016 May; 120(18):4221-31. PubMed ID: 27089954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics and density functional theory studies of substrate binding and catalysis of human brain aspartoacylase.
    Zhang CH; Gao JY; Chen ZQ; Xue Y
    J Mol Graph Model; 2010 Jun; 28(8):799-806. PubMed ID: 20227313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate binding and catalytic mechanism in phospholipase C from Bacillus cereus: a molecular mechanics and molecular dynamics study.
    da Graça Thrige D; Buur JR; Jørgensen FS
    Biopolymers; 1997 Sep; 42(3):319-36. PubMed ID: 9279125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anandamide hydrolysis in FAAH reveals a dual strategy for efficient enzyme-assisted amide bond cleavage via nitrogen inversion.
    Palermo G; Campomanes P; Cavalli A; Rothlisberger U; De Vivo M
    J Phys Chem B; 2015 Jan; 119(3):789-801. PubMed ID: 25205244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Calculation of Enzyme Reaction Free Energy Profiles Using a Hybrid Differential Relaxation Algorithm: Application to Mycobacterial Zinc Hydrolases.
    Romero JM; Martin M; Ramirez CL; Dumas VG; Marti MA
    Adv Protein Chem Struct Biol; 2015; 100():33-65. PubMed ID: 26415840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidation of the Catalytic Mechanism of a Miniature Zinc Finger Hydrolase.
    Ganguly A; Luong TQ; Brylski O; Dirkmann M; Möller D; Ebbinghaus S; Schulz F; Winter R; Sanchez-Garcia E; Thiel W
    J Phys Chem B; 2017 Jul; 121(26):6390-6398. PubMed ID: 28648071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic reaction mechanism of acetylcholinesterase determined by Born-Oppenheimer ab initio QM/MM molecular dynamics simulations.
    Zhou Y; Wang S; Zhang Y
    J Phys Chem B; 2010 Jul; 114(26):8817-25. PubMed ID: 20550161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical investigation of astacin proteolysis.
    Chen SL; Li ZS; Fang WH
    J Inorg Biochem; 2012 Jun; 111():70-9. PubMed ID: 22484502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methodological aspects of QM/MM calculations: A case study on matrix metalloproteinase-2.
    Vasilevskaya T; Khrenova MG; Nemukhin AV; Thiel W
    J Comput Chem; 2016 Jul; 37(19):1801-9. PubMed ID: 27140531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of aspartoacylase, the brain enzyme impaired in Canavan disease.
    Bitto E; Bingman CA; Wesenberg GE; McCoy JG; Phillips GN
    Proc Natl Acad Sci U S A; 2007 Jan; 104(2):456-61. PubMed ID: 17194761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A water-assisted nucleophilic mechanism utilized by BphD, the meta-cleavage product hydrolase in biphenyl degradation.
    Dong L; Zhang S; Liu Y
    J Mol Graph Model; 2017 Sep; 76():448-455. PubMed ID: 28783597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of A. aeolicus LpxC with bound product suggests alternate deacetylation mechanism.
    Miller MD; Gao N; Ross PL; Olivier NB
    Proteins; 2015 Sep; 83(9):1706-19. PubMed ID: 26177919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid QM/MM and DFT investigations of the catalytic mechanism and inhibition of the dinuclear zinc metallo-beta-lactamase CcrA from Bacteroides fragilis.
    Park H; Brothers EN; Merz KM
    J Am Chem Soc; 2005 Mar; 127(12):4232-41. PubMed ID: 15783205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A QM/MM study of the catalytic mechanism of aspartate ammonia lyase.
    Zhang J; Liu Y
    J Mol Graph Model; 2014 Jun; 51():113-9. PubMed ID: 24875395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate polarization in enzyme catalysis: QM/MM analysis of the effect of oxaloacetate polarization on acetyl-CoA enolization in citrate synthase.
    van der Kamp MW; Perruccio F; Mulholland AJ
    Proteins; 2007 Nov; 69(3):521-35. PubMed ID: 17623847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the Ser-Ser-Lys catalytic triad mechanism of peptide amidase: computational studies of the ground state, transition state, and intermediate.
    Valiña AL; Mazumder-Shivakumar D; Bruice TC
    Biochemistry; 2004 Dec; 43(50):15657-72. PubMed ID: 15595822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations.
    Valiev M; Kawai R; Adams JA; Weare JH
    J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale Computational Study on the Catalytic Mechanism of the Nonmetallo Amidase Maleamate Amidohydrolase (NicF).
    Ion BF; Meister PJ; Gauld JW
    J Phys Chem A; 2019 Sep; 123(36):7710-7719. PubMed ID: 31433182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishing the catalytic mechanism of human pancreatic α-amylase with QM/MM methods.
    Pinto GP; Brás NF; Perez MA; Fernandes PA; Russo N; Ramos MJ; Toscano M
    J Chem Theory Comput; 2015 Jun; 11(6):2508-16. PubMed ID: 26575550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dipeptide hydrolysis by the dinuclear zinc enzyme human renal dipeptidase: mechanistic insights from DFT calculations.
    Liao RZ; Himo F; Yu JG; Liu RZ
    J Inorg Biochem; 2010 Jan; 104(1):37-46. PubMed ID: 19879002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.