These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 27090153)
21. Novel supercritical carbon dioxide impregnation technique for the production of amorphous solid drug dispersions: a comparison to hot melt extrusion. Potter C; Tian Y; Walker G; McCoy C; Hornsby P; Donnelly C; Jones DS; Andrews GP Mol Pharm; 2015 May; 12(5):1377-90. PubMed ID: 25730138 [TBL] [Abstract][Full Text] [Related]
22. An investigation into the influence of drug-polymer interactions on the miscibility, processability and structure of polyvinylpyrrolidone-based hot melt extrusion formulations. Chan SY; Qi S; Craig DQ Int J Pharm; 2015 Dec; 496(1):95-106. PubMed ID: 26428633 [TBL] [Abstract][Full Text] [Related]
23. Development of amorphous solid dispersion formulations of a poorly water-soluble drug, MK-0364. Sotthivirat S; McKelvey C; Moser J; Rege B; Xu W; Zhang D Int J Pharm; 2013 Aug; 452(1-2):73-81. PubMed ID: 23651642 [TBL] [Abstract][Full Text] [Related]
24. Stability-enhanced hot-melt extruded amorphous solid dispersions via combinations of Soluplus® and HPMCAS-HF. Alshahrani SM; Lu W; Park JB; Morott JT; Alsulays BB; Majumdar S; Langley N; Kolter K; Gryczke A; Repka MA AAPS PharmSciTech; 2015 Aug; 16(4):824-34. PubMed ID: 25567525 [TBL] [Abstract][Full Text] [Related]
25. Assessing Mixing Quality of a Copovidone-TPGS Hot Melt Extrusion Process with Atomic Force Microscopy and Differential Scanning Calorimetry. Lamm MS; DiNunzio J; Khawaja NN; Crocker LS; Pecora A AAPS PharmSciTech; 2016 Feb; 17(1):89-98. PubMed ID: 26283196 [TBL] [Abstract][Full Text] [Related]
26. Oral absorption of atorvastatin solid dispersion based on cellulose or pyrrolidone derivative polymers. Kim MS; Kim JS; Cho W; Park HJ; Hwang SJ Int J Biol Macromol; 2013 Aug; 59():138-42. PubMed ID: 23567288 [TBL] [Abstract][Full Text] [Related]
27. Fast drying of biocompatible polymer films loaded with poorly water-soluble drug nano-particles via low temperature forced convection. Susarla R; Sievens-Figueroa L; Bhakay A; Shen Y; Jerez-Rozo JI; Engen W; Khusid B; Bilgili E; Romañach RJ; Morris KR; Michniak-Kohn B; Davé RN Int J Pharm; 2013 Oct; 455(1-2):93-103. PubMed ID: 23911341 [TBL] [Abstract][Full Text] [Related]
28. Implementation of transmission NIR as a PAT tool for monitoring drug transformation during HME processing. Islam MT; Scoutaris N; Maniruzzaman M; Moradiya HG; Halsey SA; Bradley MS; Chowdhry BZ; Snowden MJ; Douroumis D Eur J Pharm Biopharm; 2015 Oct; 96():106-16. PubMed ID: 26209124 [TBL] [Abstract][Full Text] [Related]
29. The development of carbamazepine-succinic acid cocrystal tablet formulations with improved in vitro and in vivo performance. Ullah M; Hussain I; Sun CC Drug Dev Ind Pharm; 2016; 42(6):969-76. PubMed ID: 26460090 [TBL] [Abstract][Full Text] [Related]
30. Stable carbamazepine colloidal systems using the cosolvent technique. Douroumis D; Fahr A Eur J Pharm Sci; 2007 Apr; 30(5):367-74. PubMed ID: 17234395 [TBL] [Abstract][Full Text] [Related]
31. Dissolution enhancement of poorly water-soluble APIs processed by hot-melt extrusion using hydrophilic polymers. Maniruzzaman M; Rana MM; Boateng JS; Mitchell JC; Douroumis D Drug Dev Ind Pharm; 2013 Feb; 39(2):218-27. PubMed ID: 22452601 [TBL] [Abstract][Full Text] [Related]
32. Fabrication of novel GMO/Eudragit E100 nanostructures for enhancing oral bioavailability of carvedilol. Patil SS; Roy K; Choudhary B; Mahadik KR Drug Dev Ind Pharm; 2016 Aug; 42(8):1300-7. PubMed ID: 26651381 [TBL] [Abstract][Full Text] [Related]
33. Preparation of carbamazepine-Soluplus solid dispersions by hot-melt extrusion, and prediction of drug-polymer miscibility by thermodynamic model fitting. Djuris J; Nikolakakis I; Ibric S; Djuric Z; Kachrimanis K Eur J Pharm Biopharm; 2013 May; 84(1):228-37. PubMed ID: 23333900 [TBL] [Abstract][Full Text] [Related]
34. Characterization of physico-mechanical properties of indomethacin and polymers to assess their suitability for hot-melt extrusion processs as a means to manufacture solid dispersion/solution. Chokshi RJ; Sandhu HK; Iyer RM; Shah NH; Malick AW; Zia H J Pharm Sci; 2005 Nov; 94(11):2463-74. PubMed ID: 16200544 [TBL] [Abstract][Full Text] [Related]
35. Investigation of Thermal and Viscoelastic Properties of Polymers Relevant to Hot Melt Extrusion, IV: Affinisol™ HPMC HME Polymers. Gupta SS; Solanki N; Serajuddin AT AAPS PharmSciTech; 2016 Feb; 17(1):148-57. PubMed ID: 26511936 [TBL] [Abstract][Full Text] [Related]
36. Lyophilised ready-to-use formulations of PEG-PCL-PEI nano-carriers for siRNA delivery. Endres T; Zheng M; Beck-Broichsitter M; Kissel T Int J Pharm; 2012 May; 428(1-2):121-4. PubMed ID: 22414387 [TBL] [Abstract][Full Text] [Related]
37. Comparison of HPMC based polymers performance as carriers for manufacture of solid dispersions using the melt extruder. Ghosh I; Snyder J; Vippagunta R; Alvine M; Vakil R; Tong WQ; Vippagunta S Int J Pharm; 2011 Oct; 419(1-2):12-9. PubMed ID: 21782911 [TBL] [Abstract][Full Text] [Related]
38. In situ formation of nanoparticles upon dispersion of melt extrudate formulations in aqueous medium assessed by asymmetrical flow field-flow fractionation. Kanzer J; Hupfeld S; Vasskog T; Tho I; Hölig P; Mägerlein M; Fricker G; Brandl M J Pharm Biomed Anal; 2010 Nov; 53(3):359-65. PubMed ID: 20447794 [TBL] [Abstract][Full Text] [Related]
39. Investigations on the influence of the type of extruder for pelletization by extrusion-spheronization. II. Sphere characteristics. Thoma K; Ziegler I Drug Dev Ind Pharm; 1998 May; 24(5):413-22. PubMed ID: 9876603 [TBL] [Abstract][Full Text] [Related]
40. Continuous production of aqueous suspensions of ultra-fine particles of curcumin using ultrasonically driven mixing device. Pandey K; Chatte A; Dalvi S Pharm Dev Technol; 2018 Jul; 23(6):608-619. PubMed ID: 28368746 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]