These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 2709018)
1. Does signal-attenuation on high-field T2-weighted MRI of the brain reflect regional cerebral iron deposition? Observations on the relationship between regional cerebral water proton T2 values and iron levels. Brooks DJ; Luthert P; Gadian D; Marsden CD J Neurol Neurosurg Psychiatry; 1989 Jan; 52(1):108-11. PubMed ID: 2709018 [TBL] [Abstract][Full Text] [Related]
2. T2 relaxation time in patients with Parkinson's disease. Antonini A; Leenders KL; Meier D; Oertel WH; Boesiger P; Anliker M Neurology; 1993 Apr; 43(4):697-700. PubMed ID: 8469325 [TBL] [Abstract][Full Text] [Related]
3. Brain iron deposition fingerprints in Parkinson's disease and progressive supranuclear palsy. Boelmans K; Holst B; Hackius M; Finsterbusch J; Gerloff C; Fiehler J; Münchau A Mov Disord; 2012 Mar; 27(3):421-7. PubMed ID: 22290788 [TBL] [Abstract][Full Text] [Related]
4. Multispectral quantitative magnetic resonance imaging of brain iron stores: a theoretical perspective. Jara H; Sakai O; Mankal P; Irving RP; Norbash AM Top Magn Reson Imaging; 2006 Feb; 17(1):19-30. PubMed ID: 17179894 [TBL] [Abstract][Full Text] [Related]
5. Imaging brain iron and diffusion patterns: a follow-up study of Parkinson's disease in the initial stages. Rossi ME; Ruottinen H; Saunamäki T; Elovaara I; Dastidar P Acad Radiol; 2014 Jan; 21(1):64-71. PubMed ID: 24331266 [TBL] [Abstract][Full Text] [Related]
6. MRI in chronic toluene abuse: low signal in the cerebral cortex on T2-weighted images. Kamran S; Bakshi R Neuroradiology; 1998 Aug; 40(8):519-21. PubMed ID: 9763341 [TBL] [Abstract][Full Text] [Related]
7. The quantitative relation between T1-weighted and T2-weighted MRI of normal gray matter and iron concentration. Vymazal J; Hajek M; Patronas N; Giedd JN; Bulte JW; Baumgarner C; Tran V; Brooks RA J Magn Reson Imaging; 1995; 5(5):554-60. PubMed ID: 8574041 [TBL] [Abstract][Full Text] [Related]
8. 7 T MRI reveals diffuse iron deposition in putamen and caudate nucleus in CADASIL. Liem MK; Lesnik Oberstein SA; Versluis MJ; Maat-Schieman ML; Haan J; Webb AG; Ferrari MD; van Buchem MA; van der Grond J J Neurol Neurosurg Psychiatry; 2012 Dec; 83(12):1180-5. PubMed ID: 22923513 [TBL] [Abstract][Full Text] [Related]
9. High-field magnetic resonance imaging of brain iron in Alzheimer disease. Schenck JF; Zimmerman EA; Li Z; Adak S; Saha A; Tandon R; Fish KM; Belden C; Gillen RW; Barba A; Henderson DL; Neil W; O'Keefe T Top Magn Reson Imaging; 2006 Feb; 17(1):41-50. PubMed ID: 17179896 [TBL] [Abstract][Full Text] [Related]
10. 1H metabolite relaxation times at 3.0 tesla: Measurements of T1 and T2 values in normal brain and determination of regional differences in transverse relaxation. Träber F; Block W; Lamerichs R; Gieseke J; Schild HH J Magn Reson Imaging; 2004 May; 19(5):537-45. PubMed ID: 15112302 [TBL] [Abstract][Full Text] [Related]
11. MRI evaluation of basal ganglia ferritin iron and neurotoxicity in Alzheimer's and Huntingon's disease. Bartzokis G; Tishler TA Cell Mol Biol (Noisy-le-grand); 2000 Jun; 46(4):821-33. PubMed ID: 10875443 [TBL] [Abstract][Full Text] [Related]
12. Role of iron and ferritin in MR imaging of the brain: a study in primates at different field strengths. Bizzi A; Brooks RA; Brunetti A; Hill JM; Alger JR; Miletich RS; Francavilla TL; Di Chiro G Radiology; 1990 Oct; 177(1):59-65. PubMed ID: 2399339 [TBL] [Abstract][Full Text] [Related]
13. Magnetic resonance imaging of human melanoma xenografts in vivo: proton spin-lattice and spin-spin relaxation times versus fractional tumour water content and fraction of necrotic tumour tissue. Rofstad EK; Steinsland E; Kaalhus O; Chang YB; Høvik B; Lyng H Int J Radiat Biol; 1994 Mar; 65(3):387-401. PubMed ID: 7908318 [TBL] [Abstract][Full Text] [Related]
14. Reversible, irreversible and effective transverse relaxation rates in normal aging brain at 3T. Sedlacik J; Boelmans K; Löbel U; Holst B; Siemonsen S; Fiehler J Neuroimage; 2014 Jan; 84():1032-41. PubMed ID: 24004692 [TBL] [Abstract][Full Text] [Related]
15. MR detection of brain iron. Thomas LO; Boyko OB; Anthony DC; Burger PC AJNR Am J Neuroradiol; 1993; 14(5):1043-8. PubMed ID: 8237678 [TBL] [Abstract][Full Text] [Related]
16. [Magnetic resonance imaging with 21.1 T and pathological correlations--diffuse Lewy body disease]. Fujioka S; Murray ME; Foroutan P; Schweitzer KJ; Dickson DW; Grant SC; Wszolek ZK Rinsho Shinkeigaku; 2011 Aug; 51(8):603-7. PubMed ID: 21878728 [TBL] [Abstract][Full Text] [Related]
17. Effect of magnetic field and iron content on NMR proton relaxation of liver, spleen and brain tissues. Hocq A; Luhmer M; Saussez S; Louryan S; Gillis P; Gossuin Y Contrast Media Mol Imaging; 2015; 10(2):144-52. PubMed ID: 24954138 [TBL] [Abstract][Full Text] [Related]
18. MR assessment of the brain maturation during the perinatal period: quantitative T2 MR study in premature newborns. Ferrie JC; Barantin L; Saliba E; Akoka S; Tranquart F; Sirinelli D; Pourcelot L Magn Reson Imaging; 1999 Nov; 17(9):1275-88. PubMed ID: 10576713 [TBL] [Abstract][Full Text] [Related]
19. Regional differences in the proton magnetic resonance relaxation times T1 and T2 within the normal human brain. Larsson EM; Englund E; Györffy-Wagner Z; Brun A; Cronqvist S; Persson B Acta Radiol Diagn (Stockh); 1986; 27(2):231-4. PubMed ID: 2424276 [TBL] [Abstract][Full Text] [Related]
20. High magnetic field water and metabolite proton T1 and T2 relaxation in rat brain in vivo. de Graaf RA; Brown PB; McIntyre S; Nixon TW; Behar KL; Rothman DL Magn Reson Med; 2006 Aug; 56(2):386-94. PubMed ID: 16767752 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]