These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1295 related articles for article (PubMed ID: 27090590)
41. Gelatin-Based Microribbon Hydrogels Accelerate Cartilage Formation by Mesenchymal Stem Cells in Three Dimensions. Conrad B; Han LH; Yang F Tissue Eng Part A; 2018 Nov; 24(21-22):1631-1640. PubMed ID: 29926770 [TBL] [Abstract][Full Text] [Related]
42. Double - network hydrogel based on exopolysaccharides as a biomimetic extracellular matrix to augment articular cartilage regeneration. Cai Z; Tang Y; Wei Y; Wang P; Zhang H Acta Biomater; 2022 Oct; 152():124-143. PubMed ID: 36055611 [TBL] [Abstract][Full Text] [Related]
43. Regenerative potential of decellularized porcine nucleus pulposus hydrogel scaffolds: stem cell differentiation, matrix remodeling, and biocompatibility studies. Mercuri JJ; Patnaik S; Dion G; Gill SS; Liao J; Simionescu DT Tissue Eng Part A; 2013 Apr; 19(7-8):952-66. PubMed ID: 23140227 [TBL] [Abstract][Full Text] [Related]
44. Impact of Hydrogel Stiffness on Differentiation of Human Adipose-Derived Stem Cell Microspheroids. Žigon-Branc S; Markovic M; Van Hoorick J; Van Vlierberghe S; Dubruel P; Zerobin E; Baudis S; Ovsianikov A Tissue Eng Part A; 2019 Oct; 25(19-20):1369-1380. PubMed ID: 30632465 [TBL] [Abstract][Full Text] [Related]
45. Development of a novel hybrid bioactive hydrogel for future clinical applications. Francis L; Greco KV; Boccaccini AR; Roether JJ; English NR; Huang H; Ploeg R; Ansari T J Biomater Appl; 2018 Sep; 33(3):447-465. PubMed ID: 30223736 [TBL] [Abstract][Full Text] [Related]
46. Injectable Polypeptide Hydrogels with Tunable Microenvironment for 3D Spreading and Chondrogenic Differentiation of Bone-Marrow-Derived Mesenchymal Stem Cells. Ren K; Cui H; Xu Q; He C; Li G; Chen X Biomacromolecules; 2016 Dec; 17(12):3862-3871. PubMed ID: 27775890 [TBL] [Abstract][Full Text] [Related]
47. Hydrogel composite scaffolds achieve recruitment and chondrogenesis in cartilage tissue engineering applications. Huang B; Li P; Chen M; Peng L; Luo X; Tian G; Wang H; Wu L; Tian Q; Li H; Yang Y; Jiang S; Yang Z; Zha K; Sui X; Liu S; Guo Q J Nanobiotechnology; 2022 Jan; 20(1):25. PubMed ID: 34991615 [TBL] [Abstract][Full Text] [Related]
48. Glucosamine-grafted methacrylated gelatin hydrogels as potential biomaterials for cartilage repair. Suo H; Li L; Zhang C; Yin J; Xu K; Liu J; Fu J J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):990-999. PubMed ID: 31369700 [TBL] [Abstract][Full Text] [Related]
49. Covalently conjugated transforming growth factor-β1 in modular chitosan hydrogels for the effective treatment of articular cartilage defects. Choi B; Kim S; Fan J; Kowalski T; Petrigliano F; Evseenko D; Lee M Biomater Sci; 2015 May; 3(5):742-52. PubMed ID: 26222593 [TBL] [Abstract][Full Text] [Related]
50. Adipose-derived stem cell sheet encapsulated construct of micro-porous decellularized cartilage debris and hydrogel for cartilage defect repair. Zhang Y; Lei Z; Qi Y; Di T; Li G; Zhang W; Yan W Med Hypotheses; 2017 Nov; 109():111-113. PubMed ID: 29150268 [TBL] [Abstract][Full Text] [Related]
51. Fabrication of anatomically-shaped cartilage constructs using decellularized cartilage-derived matrix scaffolds. Rowland CR; Colucci LA; Guilak F Biomaterials; 2016 Jun; 91():57-72. PubMed ID: 26999455 [TBL] [Abstract][Full Text] [Related]
52. Articular Joint-Simulating Mechanical Load Activates Endogenous TGF-β in a Highly Cellularized Bioadhesive Hydrogel for Cartilage Repair. Behrendt P; Ladner Y; Stoddart MJ; Lippross S; Alini M; Eglin D; Armiento AR Am J Sports Med; 2020 Jan; 48(1):210-221. PubMed ID: 31877102 [TBL] [Abstract][Full Text] [Related]