These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 27090735)

  • 1. Common neural correlates of real and imagined movements contributing to the performance of brain-machine interfaces.
    Sugata H; Hirata M; Yanagisawa T; Matsushita K; Yorifuji S; Yoshimine T
    Sci Rep; 2016 Apr; 6():24663. PubMed ID: 27090735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alpha band functional connectivity correlates with the performance of brain-machine interfaces to decode real and imagined movements.
    Sugata H; Hirata M; Yanagisawa T; Shayne M; Matsushita K; Goto T; Yorifuji S; Yoshimine T
    Front Hum Neurosci; 2014; 8():620. PubMed ID: 25152729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction of hand, elbow and shoulder actual and imagined trajectories in 3D space using EEG slow cortical potentials.
    Sosnik R; Ben Zur O
    J Neural Eng; 2020 Feb; 17(1):016065. PubMed ID: 31747655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using a noninvasive decoding method to classify rhythmic movement imaginations of the arm in two planes.
    Ofner P; Müller-Putz GR
    IEEE Trans Biomed Eng; 2015 Mar; 62(3):972-81. PubMed ID: 25494495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time recognition of different imagined actions on the same side of a single limb based on the fNIRS correlation coefficient.
    Fu Y; Wang F; Li Y; Gong A; Qian Q; Su L; Zhao L
    Biomed Tech (Berl); 2022 Jun; 67(3):173-183. PubMed ID: 35420003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding Three-Dimensional Trajectory of Executed and Imagined Arm Movements From Electroencephalogram Signals.
    Kim JH; Bießmann F; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):867-76. PubMed ID: 25474811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuromagnetic Decoding of Simultaneous Bilateral Hand Movements for Multidimensional Brain-Machine Interfaces.
    Belkacem AN; Nishio S; Suzuki T; Ishiguro H; Hirata M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jun; 26(6):1301-1310. PubMed ID: 29877855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Which motor cortical region best predicts imagined movement?
    Park CH; Chang WH; Lee M; Kwon GH; Kim L; Kim ST; Kim YH
    Neuroimage; 2015 Jun; 113():101-10. PubMed ID: 25800212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural decoding of continuous upper limb movements: a meta-analysis.
    Khaliq Fard M; Fallah A; Maleki A
    Disabil Rehabil Assist Technol; 2022 Oct; 17(7):731-737. PubMed ID: 33186068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of electroencephalographic pattern classifiers for real and imaginary thumb and index finger movements of one hand.
    Sonkin KM; Stankevich LA; Khomenko JG; Nagornova ZV; Shemyakina NV
    Artif Intell Med; 2015 Feb; 63(2):107-17. PubMed ID: 25547267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The Changes in the Hemodynamic Activity of the Brain during Moroe Imagery Training with the Use of Brain-Computer Interface].
    Frolov AA; Husek D; Silchenko AV; Tintera Y; Rydlo J
    Fiziol Cheloveka; 2016; 42(1):5-18. PubMed ID: 27188143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoding trajectories of imagined hand movement using electrocorticograms for brain-machine interface.
    Jang SJ; Yang YJ; Ryun S; Kim JS; Chung CK; Jeong J
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 35985293
    [No Abstract]   [Full Text] [Related]  

  • 13. Reconstructing Degree of Forearm Rotation from Imagined movements for BCI-based Robot Hand Control.
    Yun YD; Jeong JH; Cho JH; Kim DJ; Lee SW
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3014-3017. PubMed ID: 31946523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding Imagined 3D Hand Movement Trajectories From EEG: Evidence to Support the Use of Mu, Beta, and Low Gamma Oscillations.
    Korik A; Sosnik R; Siddique N; Coyle D
    Front Neurosci; 2018; 12():130. PubMed ID: 29615848
    [No Abstract]   [Full Text] [Related]  

  • 15. The influence of eye movements on the temporal features of executed and imagined arm movements.
    Gueugneau N; Crognier L; Papaxanthis C
    Brain Res; 2008 Jan; 1187():95-102. PubMed ID: 18035337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motor imagery involves predicting the sensory consequences of the imagined movement.
    Kilteni K; Andersson BJ; Houborg C; Ehrsson HH
    Nat Commun; 2018 Apr; 9(1):1617. PubMed ID: 29691389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of cortical connectivity during real and imagined rhythmic finger tapping.
    Stavrinou ML; Moraru L; Cimponeriu L; Della Penna S; Bezerianos A
    Brain Topogr; 2007; 19(3):137-45. PubMed ID: 17587169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mentally represented motor actions in normal aging: III. Electromyographic features of imagined arm movements.
    Personnier P; Ballay Y; Papaxanthis C
    Behav Brain Res; 2010 Jan; 206(2):184-91. PubMed ID: 19751770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of identifying the ideal locations for motor intention decoding using unimodal and multimodal classification at 7T-fMRI.
    Yoo PE; Oxley TJ; John SE; Opie NL; Ordidge RJ; O'Brien TJ; Hagan MA; Wong YT; Moffat BA
    Sci Rep; 2018 Oct; 8(1):15556. PubMed ID: 30349004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoding Imagined 3D Arm Movement Trajectories From EEG to Control Two Virtual Arms-A Pilot Study.
    Korik A; Sosnik R; Siddique N; Coyle D
    Front Neurorobot; 2019; 13():94. PubMed ID: 31798438
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.