These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 27090949)
1. Rejecting deep brain stimulation artefacts from MEG data using ICA and mutual information. Abbasi O; Hirschmann J; Schmitz G; Schnitzler A; Butz M J Neurosci Methods; 2016 Aug; 268():131-41. PubMed ID: 27090949 [TBL] [Abstract][Full Text] [Related]
2. The comparative performance of DBS artefact rejection methods for MEG recordings. Kandemir AL; Litvak V; Florin E Neuroimage; 2020 Oct; 219():117057. PubMed ID: 32540355 [TBL] [Abstract][Full Text] [Related]
3. Analysis of simultaneous MEG and intracranial LFP recordings during Deep Brain Stimulation: a protocol and experimental validation. Oswal A; Jha A; Neal S; Reid A; Bradbury D; Aston P; Limousin P; Foltynie T; Zrinzo L; Brown P; Litvak V J Neurosci Methods; 2016 Mar; 261():29-46. PubMed ID: 26698227 [TBL] [Abstract][Full Text] [Related]
4. Optimized beamforming for simultaneous MEG and intracranial local field potential recordings in deep brain stimulation patients. Litvak V; Eusebio A; Jha A; Oostenveld R; Barnes GR; Penny WD; Zrinzo L; Hariz MI; Limousin P; Friston KJ; Brown P Neuroimage; 2010 May; 50(4):1578-88. PubMed ID: 20056156 [TBL] [Abstract][Full Text] [Related]
5. Quantitatively validating the efficacy of artifact suppression techniques to study the cortical consequences of deep brain stimulation with magnetoencephalography. Boring MJ; Jessen ZF; Wozny TA; Ward MJ; Whiteman AC; Richardson RM; Ghuman AS Neuroimage; 2019 Oct; 199():366-374. PubMed ID: 31154045 [TBL] [Abstract][Full Text] [Related]
6. Moving average template subtraction to remove stimulation artefacts in EEGs and LFPs recorded during deep brain stimulation. Sun L; Hinrichs H J Neurosci Methods; 2016 Jun; 266():126-36. PubMed ID: 27039973 [TBL] [Abstract][Full Text] [Related]
7. Effects of DBS on auditory and somatosensory processing in Parkinson's disease. Airaksinen K; Mäkelä JP; Taulu S; Ahonen A; Nurminen J; Schnitzler A; Pekkonen E Hum Brain Mapp; 2011 Jul; 32(7):1091-9. PubMed ID: 20645306 [TBL] [Abstract][Full Text] [Related]
8. Somatomotor mu rhythm amplitude correlates with rigidity during deep brain stimulation in Parkinsonian patients. Airaksinen K; Butorina A; Pekkonen E; Nurminen J; Taulu S; Ahonen A; Schnitzler A; Mäkelä JP Clin Neurophysiol; 2012 Oct; 123(10):2010-7. PubMed ID: 22513261 [TBL] [Abstract][Full Text] [Related]
10. Time-frequency analysis of resting state and evoked EEG data recorded at higher magnetic fields up to 9.4 T. Abbasi O; Dammers J; Arrubla J; Warbrick T; Butz M; Neuner I; Shah NJ J Neurosci Methods; 2015 Nov; 255():1-11. PubMed ID: 26213220 [TBL] [Abstract][Full Text] [Related]
11. EEG and MEG primers for tracking DBS network effects. Litvak V; Florin E; Tamás G; Groppa S; Muthuraman M Neuroimage; 2021 Jan; 224():117447. PubMed ID: 33059051 [TBL] [Abstract][Full Text] [Related]
12. Differentiated effects of deep brain stimulation and medication on somatosensory processing in Parkinson's disease. Sridharan KS; Højlund A; Johnsen EL; Sunde NA; Johansen LG; Beniczky S; Østergaard K Clin Neurophysiol; 2017 Jul; 128(7):1327-1336. PubMed ID: 28570866 [TBL] [Abstract][Full Text] [Related]
13. Signal-to-noise ratio of the MEG signal after preprocessing. Gonzalez-Moreno A; Aurtenetxe S; Lopez-Garcia ME; del Pozo F; Maestu F; Nevado A J Neurosci Methods; 2014 Jan; 222():56-61. PubMed ID: 24200506 [TBL] [Abstract][Full Text] [Related]
14. An electronic device for artefact suppression in human local field potential recordings during deep brain stimulation. Rossi L; Foffani G; Marceglia S; Bracchi F; Barbieri S; Priori A J Neural Eng; 2007 Jun; 4(2):96-106. PubMed ID: 17409484 [TBL] [Abstract][Full Text] [Related]
15. Cortical magnetoencephalography of deep brain stimulation for the treatment of postural tremor. Connolly AT; Bajwa JA; Johnson MD Brain Stimul; 2012 Oct; 5(4):616-24. PubMed ID: 22425066 [TBL] [Abstract][Full Text] [Related]
17. A new biomarker for subthalamic deep brain stimulation for patients with advanced Parkinson's disease--a pilot study. Gmel GE; Hamilton TJ; Obradovic M; Gorman RB; Single PS; Chenery HJ; Coyne T; Silburn PA; Parker JL J Neural Eng; 2015 Dec; 12(6):066013. PubMed ID: 26469805 [TBL] [Abstract][Full Text] [Related]
18. Characterizing the effects of deep brain stimulation with magnetoencephalography: A review. Harmsen IE; Rowland NC; Wennberg RA; Lozano AM Brain Stimul; 2018; 11(3):481-491. PubMed ID: 29331287 [TBL] [Abstract][Full Text] [Related]
19. Removing artefacts from TMS-EEG recordings using independent component analysis: importance for assessing prefrontal and motor cortex network properties. Rogasch NC; Thomson RH; Farzan F; Fitzgibbon BM; Bailey NW; Hernandez-Pavon JC; Daskalakis ZJ; Fitzgerald PB Neuroimage; 2014 Nov; 101():425-39. PubMed ID: 25067813 [TBL] [Abstract][Full Text] [Related]
20. Dorsolateral subthalamic neuronal activity enhanced by median nerve stimulation characterizes Parkinson's disease during deep brain stimulation with general anesthesia. Tsai ST; Chuang WY; Kuo CC; Chao PC; Chen TY; Hung HY; Chen SY J Neurosurg; 2015 Dec; 123(6):1394-400. PubMed ID: 26024004 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]