These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Characterizing the Surface Roughness Length Scales of Lactose Carrier Particles in Dry Powder Inhalers. Tan BMJ; Chan LW; Heng PWS Mol Pharm; 2018 Apr; 15(4):1635-1642. PubMed ID: 29490144 [TBL] [Abstract][Full Text] [Related]
3. Surface Modification of lactose carrier particles using a fluid bed coater to improve fine particle fraction for dry powder inhalers. Gong QQ; Tay JYS; Veronica N; Xu J; Heng PWS; Zhang YP; Liew CV Pharm Dev Technol; 2023 Feb; 28(2):164-175. PubMed ID: 36683577 [TBL] [Abstract][Full Text] [Related]
4. Preparation and Evaluation of Surface Modified Lactose Particles for Improved Performance of Fluticasone Propionate Dry Powder Inhaler. Singh DJ; Jain RR; Soni PS; Abdul S; Darshana H; Gaikwad RV; Menon MD J Aerosol Med Pulm Drug Deliv; 2015 Aug; 28(4):254-67. PubMed ID: 25517187 [TBL] [Abstract][Full Text] [Related]
5. Investigations on the Mechanism of Magnesium Stearate to Modify Aerosol Performance in Dry Powder Inhaled Formulations. Jetzer MW; Schneider M; Morrical BD; Imanidis G J Pharm Sci; 2018 Apr; 107(4):984-998. PubMed ID: 29247741 [TBL] [Abstract][Full Text] [Related]
6. Influence of size and surface roughness of large lactose carrier particles in dry powder inhaler formulations. Donovan MJ; Smyth HD Int J Pharm; 2010 Dec; 402(1-2):1-9. PubMed ID: 20816928 [TBL] [Abstract][Full Text] [Related]
7. Formulating powder-device combinations for salmeterol xinafoate dry powder inhalers. Hassoun M; Ho S; Muddle J; Buttini F; Parry M; Hammond M; Forbes B Int J Pharm; 2015 Jul; 490(1-2):360-7. PubMed ID: 25987210 [TBL] [Abstract][Full Text] [Related]
8. Air classifier technology (ACT) in dry powder inhalation Part 4. Performance of air classifier technology in the Novolizer multi-dose dry powder inhaler. de Boer AH; Hagedoorn P; Gjaltema D; Goede J; Frijlink HW Int J Pharm; 2006 Mar; 310(1-2):81-9. PubMed ID: 16442246 [TBL] [Abstract][Full Text] [Related]
9. Role of dispersion enhancer selection in the development of novel tratinterol hydrochloride dry powder inhalation formulations. Liu T; Tong S; Liao Q; Pan L; Cheng M; Rantanen J; Cun D; Yang M Int J Pharm; 2023 Mar; 635():122702. PubMed ID: 36773729 [TBL] [Abstract][Full Text] [Related]
10. Insights into the roles of carrier microstructure in adhesive/carrier-based dry powder inhalation mixtures: Carrier porosity and fine particle content. Shalash AO; Molokhia AM; Elsayed MM Eur J Pharm Biopharm; 2015 Oct; 96():291-303. PubMed ID: 26275831 [TBL] [Abstract][Full Text] [Related]
11. Limitations of high dose carrier based formulations. Yeung S; Traini D; Tweedie A; Lewis D; Church T; Young PM Int J Pharm; 2018 Jun; 544(1):141-152. PubMed ID: 29649519 [TBL] [Abstract][Full Text] [Related]
12. Critical attributes of fine excipient materials in carrier-based dry powder inhalation formulations: The particle shape and surface properties. Elsayed MMA; Alfagih IM; Brockbank K; Aodah AH; Ali R; Almansour K; Shalash AO Int J Pharm; 2024 Apr; 655():123966. PubMed ID: 38452834 [TBL] [Abstract][Full Text] [Related]
14. Dry powder inhaler performance of spray dried mannitol with tailored surface morphologies as carrier and salbutamol sulphate. Mönckedieck M; Kamplade J; Fakner P; Urbanetz NA; Walzel P; Steckel H; Scherließ R Int J Pharm; 2017 May; 524(1-2):351-363. PubMed ID: 28347847 [TBL] [Abstract][Full Text] [Related]
15. An investigation into the effect of fine lactose particles on the fluidization behaviour and aerosolization performance of carrier-based dry powder inhaler formulations. Kinnunen H; Hebbink G; Peters H; Shur J; Price R AAPS PharmSciTech; 2014 Aug; 15(4):898-909. PubMed ID: 24756910 [TBL] [Abstract][Full Text] [Related]
16. Effect of carrier particle shape on dry powder inhaler performance. Kaialy W; Alhalaweh A; Velaga SP; Nokhodchi A Int J Pharm; 2011 Dec; 421(1):12-23. PubMed ID: 21945739 [TBL] [Abstract][Full Text] [Related]
18. Assessment of Dry Powder Inhaler Carrier Targeted Design: A Comparative Case Study of Diverse Anomeric Compositions and Physical Properties of Lactose. Pinto JT; Zellnitz S; Guidi T; Roblegg E; Paudel A Mol Pharm; 2018 Jul; 15(7):2827-2839. PubMed ID: 29856921 [TBL] [Abstract][Full Text] [Related]
19. Chitosan-based binary dry powder inhaler carrier with nanometer roughness for improving in vitro and in vivo aerosolization performance. Huang Y; Huang Z; Zhang X; Zhao Z; Zhang X; Wang K; Ma C; Zhu C; Pan X; Wu C Drug Deliv Transl Res; 2018 Oct; 8(5):1274-1288. PubMed ID: 30112607 [TBL] [Abstract][Full Text] [Related]
20. The role of lactose carrier on the powder behavior and aerodynamic performance of bosentan microparticles for dry powder inhalation. Lee HJ; Lee HG; Kwon YB; Kim JY; Rhee YS; Chon J; Park ES; Kim DW; Park CW Eur J Pharm Sci; 2018 May; 117():279-289. PubMed ID: 29510172 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]