BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 27091042)

  • 21. The Advances of Ceria Nanoparticles for Biomedical Applications in Orthopaedics.
    Li H; Xia P; Pan S; Qi Z; Fu C; Yu Z; Kong W; Chang Y; Wang K; Wu D; Yang X
    Int J Nanomedicine; 2020; 15():7199-7214. PubMed ID: 33061376
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Various physicochemical and surface properties controlling the bioactivity of cerium oxide nanoparticles.
    Chen BH; Stephen Inbaraj B
    Crit Rev Biotechnol; 2018 Nov; 38(7):1003-1024. PubMed ID: 29402135
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasma sprayed cerium oxide coating inhibits H2O2-induced oxidative stress and supports cell viability.
    Li K; Xie Y; You M; Huang L; Zheng X
    J Mater Sci Mater Med; 2016 Jun; 27(6):100. PubMed ID: 27091042
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cerium Oxide-Incorporated Calcium Silicate Coating Protects MC3T3-E1 Osteoblastic Cells from H
    Li K; Xie Y; You M; Huang L; Zheng X
    Biol Trace Elem Res; 2016 Nov; 174(1):198-207. PubMed ID: 27038622
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Incorporation of Cerium Oxide into Hydroxyapatite Coating Protects Bone Marrow Stromal Cells Against H
    Li K; Shen Q; Xie Y; You M; Huang L; Zheng X
    Biol Trace Elem Res; 2018 Mar; 182(1):91-104. PubMed ID: 28624869
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protective Effects of Cerium Oxide Nanoparticles on MC3T3-E1 Osteoblastic Cells Exposed to X-Ray Irradiation.
    Wang C; Blough E; Dai X; Olajide O; Driscoll H; Leidy JW; July M; Triest WE; Wu M
    Cell Physiol Biochem; 2016; 38(4):1510-9. PubMed ID: 27050501
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antioxidant and anti-genotoxic properties of cerium oxide nanoparticles in a pulmonary-like cell system.
    Rubio L; Annangi B; Vila L; Hernández A; Marcos R
    Arch Toxicol; 2016 Feb; 90(2):269-78. PubMed ID: 25618551
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Effects of Cerium Valence States at Cerium Oxide Coatings on the Responses of Bone Mesenchymal Stem Cells and Macrophages.
    You M; Li K; Xie Y; Huang L; Zheng X
    Biol Trace Elem Res; 2017 Oct; 179(2):259-270. PubMed ID: 28229387
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Untangling the biological effects of cerium oxide nanoparticles: the role of surface valence states.
    Pulido-Reyes G; Rodea-Palomares I; Das S; Sakthivel TS; Leganes F; Rosal R; Seal S; Fernández-Piñas F
    Sci Rep; 2015 Oct; 5():15613. PubMed ID: 26489858
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineering the defect state and reducibility of ceria based nanoparticles for improved anti-oxidation performance.
    Wang YJ; Dong H; Lyu GM; Zhang HY; Ke J; Kang LQ; Teng JL; Sun LD; Si R; Zhang J; Liu YJ; Zhang YW; Huang YH; Yan CH
    Nanoscale; 2015 Sep; 7(33):13981-90. PubMed ID: 26228305
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis and characterization of cerium- and gallium-containing borate bioactive glass scaffolds for bone tissue engineering.
    Deliormanlı AM
    J Mater Sci Mater Med; 2015 Feb; 26(2):67. PubMed ID: 25631259
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrogen peroxide inhibits proliferation and endothelial differentiation of bone marrow stem cells partially via reactive oxygen species generation.
    Xiao Y; Li X; Cui Y; Zhang J; Liu L; Xie X; Hao H; He G; Kander MC; Chen M; Liu Z; Verfaillie CM; Zhu H; Lei M; Liu Z
    Life Sci; 2014 Sep; 112(1-2):33-40. PubMed ID: 25058920
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biocompatibility evaluation of porous ceria foams for orthopedic tissue engineering.
    Ball JP; Mound BA; Monsalve AG; Nino JC; Allen JB
    J Biomed Mater Res A; 2015 Jan; 103(1):8-15. PubMed ID: 24677427
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of cerium valence states at cerium oxide nanoparticle surfaces on cell proliferation.
    Naganuma T; Traversa E
    Biomaterials; 2014 May; 35(15):4441-53. PubMed ID: 24612920
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protective effect of apigenin against oxidative stress-induced damage in osteoblastic cells.
    Jung WW
    Int J Mol Med; 2014 May; 33(5):1327-34. PubMed ID: 24573323
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The synergistic effect of hierarchical micro/nano-topography and bioactive ions for enhanced osseointegration.
    Zhang W; Wang G; Liu Y; Zhao X; Zou D; Zhu C; Jin Y; Huang Q; Sun J; Liu X; Jiang X; Zreiqat H
    Biomaterials; 2013 Apr; 34(13):3184-95. PubMed ID: 23380352
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The osteogenic activity of strontium loaded titania nanotube arrays on titanium substrates.
    Zhao L; Wang H; Huo K; Zhang X; Wang W; Zhang Y; Wu Z; Chu PK
    Biomaterials; 2013 Jan; 34(1):19-29. PubMed ID: 23046755
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stability of the Ce3+ valence state in cerium oxide nanoparticle layers.
    Naganuma T; Traversa E
    Nanoscale; 2012 Aug; 4(16):4950-3. PubMed ID: 22791232
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.