These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 27091073)

  • 81. DNA nanotechnology based on i-motif structures.
    Dong Y; Yang Z; Liu D
    Acc Chem Res; 2014 Jun; 47(6):1853-60. PubMed ID: 24845472
    [TBL] [Abstract][Full Text] [Related]  

  • 82. A nanostructure made of a bacterial noncoding RNA.
    Cayrol B; Nogues C; Dawid A; Sagi I; Silberzan P; Isambert H
    J Am Chem Soc; 2009 Dec; 131(47):17270-6. PubMed ID: 19821568
    [TBL] [Abstract][Full Text] [Related]  

  • 83. DNA origami: the art of folding DNA.
    Saccà B; Niemeyer CM
    Angew Chem Int Ed Engl; 2012 Jan; 51(1):58-66. PubMed ID: 22162047
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly.
    Zheng M; Jagota A; Strano MS; Santos AP; Barone P; Chou SG; Diner BA; Dresselhaus MS; McLean RS; Onoa GB; Samsonidze GG; Semke ED; Usrey M; Walls DJ
    Science; 2003 Nov; 302(5650):1545-8. PubMed ID: 14645843
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Sites of high local frustration in DNA origami.
    Kosinski R; Mukhortava A; Pfeifer W; Candelli A; Rauch P; Saccà B
    Nat Commun; 2019 Mar; 10(1):1061. PubMed ID: 30837459
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Programmed-assembly system using DNA jigsaw pieces.
    Endo M; Sugita T; Katsuda Y; Hidaka K; Sugiyama H
    Chemistry; 2010 May; 16(18):5362-8. PubMed ID: 20391568
    [TBL] [Abstract][Full Text] [Related]  

  • 87. DNA enzyme generated by a novel single-stranded DNA expression vector inhibits expression of the essential bacterial cell division gene ftsZ.
    Tan XX; Rose K; Margolin W; Chen Y
    Biochemistry; 2004 Feb; 43(4):1111-7. PubMed ID: 14744157
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Versatile kit of robust nanoshapes self-assembling from RNA and DNA modules.
    Monferrer A; Zhang D; Lushnikov AJ; Hermann T
    Nat Commun; 2019 Feb; 10(1):608. PubMed ID: 30723214
    [TBL] [Abstract][Full Text] [Related]  

  • 89. DNA as invisible ink for AFM nanolithography.
    Liang J; Castronovo M; Scoles G
    J Am Chem Soc; 2012 Jan; 134(1):39-42. PubMed ID: 22148469
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Base-Sequence-Independent Efficient Redox Switching of Self-Assembled DNA Nanocages.
    Wang B; Song L; Jin B; Deng N; Wu X; He J; Deng Z; Li Y
    Chembiochem; 2019 Nov; 20(21):2743-2746. PubMed ID: 31100196
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Single-Molecule Manipulation of the Duplex Formation and Dissociation at the G-Quadruplex/i-Motif Site in the DNA Nanostructure.
    Endo M; Xing X; Zhou X; Emura T; Hidaka K; Tuesuwan B; Sugiyama H
    ACS Nano; 2015 Oct; 9(10):9922-9. PubMed ID: 26371377
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Structure of nanoscale truncated octahedral DNA cages: variation of single-stranded linker regions and influence on assembly yields.
    Oliveira CL; Juul S; Jørgensen HL; Knudsen B; Tordrup D; Oteri F; Falconi M; Koch J; Desideri A; Pedersen JS; Andersen FF; Knudsen BR
    ACS Nano; 2010 Mar; 4(3):1367-76. PubMed ID: 20146442
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Controlling aggregation of cholesterol-modified DNA nanostructures.
    Ohmann A; Göpfrich K; Joshi H; Thompson RF; Sobota D; Ranson NA; Aksimentiev A; Keyser UF
    Nucleic Acids Res; 2019 Dec; 47(21):11441-11451. PubMed ID: 31642494
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Precision Templated Bottom-Up Multiprotein Nanoassembly through Defined Click Chemistry Linkage to DNA.
    Marth G; Hartley AM; Reddington SC; Sargisson LL; Parcollet M; Dunn KE; Jones DD; Stulz E
    ACS Nano; 2017 May; 11(5):5003-5010. PubMed ID: 28414900
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Search for effective chemical quenching to arrest molecular assembly and directly monitor DNA nanostructure formation.
    Majikes JM; Nash JA; LaBean TH
    Nanoscale; 2017 Jan; 9(4):1637-1644. PubMed ID: 28074960
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA.
    Duquette ML; Handa P; Vincent JA; Taylor AF; Maizels N
    Genes Dev; 2004 Jul; 18(13):1618-29. PubMed ID: 15231739
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Geometry-Based Self-Assembly of Histone-DNA Nanostructures at Single-Nucleotide Resolution.
    Serag MF; Aikeremu A; Tsukamoto R; Piwoński H; Abadi M; Kaji N; Dwyer JR; Baba Y; Habuchi S
    ACS Nano; 2019 Jul; 13(7):8155-8168. PubMed ID: 31244030
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Measuring the Conformation and Persistence Length of Single-Stranded DNA Using a DNA Origami Structure.
    Roth E; Glick Azaria A; Girshevitz O; Bitler A; Garini Y
    Nano Lett; 2018 Nov; 18(11):6703-6709. PubMed ID: 30352164
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Self-Assembly of Microparticles by Supramolecular Homopolymerization of One Component DNA Molecule.
    Zeng J; Fu W; Qi Z; Zhu Q; He H; Huang C; Zuo H; Mao C
    Small; 2019 Jun; 15(26):e1805552. PubMed ID: 30734479
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Supported Fluid Lipid Bilayer as a Scaffold to Direct Assembly of RNA Nanostructures.
    Dabkowska AP; Michanek A; Jaeger L; Chworos A; Nylander T; Sparr E
    Methods Mol Biol; 2017; 1632():107-122. PubMed ID: 28730435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.