BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 27091395)

  • 1. In situ formation of a ZnO/ZnSe nanonail array as a photoelectrode for enhanced photoelectrochemical water oxidation performance.
    Wang L; Tian G; Chen Y; Xiao Y; Fu H
    Nanoscale; 2016 Apr; 8(17):9366-75. PubMed ID: 27091395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ growth of matchlike ZnO/Au plasmonic heterostructure for enhanced photoelectrochemical water splitting.
    Wu M; Chen WJ; Shen YH; Huang FZ; Li CH; Li SK
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15052-60. PubMed ID: 25144940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile Synthesis of a Porous ZnO Nanorod Array with Enhanced Photocatalysis for Photoelectrochemical Water Splitting Application.
    Khan S; Liu XH; Jiang X; Chen QY
    J Nanosci Nanotechnol; 2020 Jun; 20(6):3512-3518. PubMed ID: 31748045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing the quasi-theoretical photocurrent density of ZnO nanorods via a lukewarm hydrothermal method.
    Chen YC; Wu ZJ; Hsu YK
    Nanoscale; 2020 Jun; 12(23):12292-12299. PubMed ID: 32285059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of ZnO/ZnSe core/shell nanorod arrays photoelectrodes on PbS quantum dot sensitized solar cell performance.
    Kamruzzaman M
    Nanoscale Adv; 2020 Jan; 2(1):286-295. PubMed ID: 36133990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding systematic growth mechanism of porous Zn
    Patil RP; Mahadik MA; Chae WS; Jang JS
    J Colloid Interface Sci; 2023 Aug; 644():246-255. PubMed ID: 37119642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimony-doped tin oxide nanorods as a transparent conducting electrode for enhancing photoelectrochemical oxidation of water by hematite.
    Sun Y; Chemelewski WD; Berglund SP; Li C; He H; Shi G; Mullins CB
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5494-9. PubMed ID: 24665964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous p-n Junction CdS/Cu
    Wang L; Wang W; Chen Y; Yao L; Zhao X; Shi H; Cao M; Liang Y
    ACS Appl Mater Interfaces; 2018 Apr; 10(14):11652-11662. PubMed ID: 29544248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High and stable photoelectrochemical activity of ZnO/ZnSe/CdSe/Cu(x)S core-shell nanowire arrays: nanoporous surface with Cu(x)S as a hole mediator.
    Ouyang WX; Yu YX; Zhang WD
    Phys Chem Chem Phys; 2015 Jun; 17(22):14827-35. PubMed ID: 25978305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-efficiency photoelectrochemical properties by a highly crystalline CdS-sensitized ZnO nanorod array.
    Bu Y; Chen Z; Li W; Yu J
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):5097-104. PubMed ID: 23688263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of ZnO/ZnS/CdS/CuInSâ‚‚ core-shell nanowire arrays via ion exchange: p-n junction photoanode with enhanced photoelectrochemical activity under visible light.
    Yu YX; Ouyang WX; Liao ZT; Du BB; Zhang WD
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8467-74. PubMed ID: 24758144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced photoelectrochemical performance of bridged ZnO nanorod arrays grown on V-grooved structure.
    Wei Y; Ke L; Leong ES; Liu H; Liew LL; Teng JH; Du H; Sun XW
    Nanotechnology; 2012 Sep; 23(36):365704. PubMed ID: 22910379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Layered Double Hydroxide onto Perovskite Oxide-Decorated ZnO Nanorods for Modulation of Carrier Transfer Behavior in Photoelectrochemical Water Oxidation.
    Long X; Wang C; Wei S; Wang T; Jin J; Ma J
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2452-2459. PubMed ID: 31845790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterostructured TiO2 Nanorod@Nanobowl Arrays for Efficient Photoelectrochemical Water Splitting.
    Wang W; Dong J; Ye X; Li Y; Ma Y; Qi L
    Small; 2016 Mar; 12(11):1469-78. PubMed ID: 26779803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porous Zn
    Patil RP; Mahadik MA; Chae WS; Choi SH; Jang JS
    ACS Appl Mater Interfaces; 2023 Aug; 15(31):37361-37370. PubMed ID: 37500097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TiO
    Li CH; Hsu CW; Lu SY
    J Colloid Interface Sci; 2018 Jul; 521():216-225. PubMed ID: 29571103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile synthesis of ZnO/CuInS2 nanorod arrays for photocatalytic pollutants degradation.
    Yang Y; Que W; Zhang X; Xing Y; Yin X; Du Y
    J Hazard Mater; 2016 Nov; 317():430-439. PubMed ID: 27322900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of a ZnO Heterogeneous Structure Using Co
    Markhabayeva AA; Kalkozova ZK; Nemkayeva R; Yerlanuly Y; Anarova AS; Tulegenova MA; Tulegenova AT; Abdullin KA
    Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38203999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ZnO nanorod array/CuAlO2 nanofiber heterojunction on Ni substrate: synthesis and photoelectrochemical properties.
    Ding J; Sui Y; Fu W; Yang H; Zhao B; Li M
    Nanotechnology; 2011 Jul; 22(29):295706. PubMed ID: 21677371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Some Distinct Attributes of ZnO Nanorods Arrays: Effects of Varying Hydrothermal Growth Time.
    Almamari MR; Ahmed NM; Holi AM; Yam FK; Kyaw HH; Almessiere MA; Al-Abri MZ
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.