BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 27091395)

  • 21. Solution growth of Ta-doped hematite nanorods for efficient photoelectrochemical water splitting: a tradeoff between electronic structure and nanostructure evolution.
    Fu Y; Dong CL; Zhou Z; Lee WY; Chen J; Guo P; Zhao L; Shen S
    Phys Chem Chem Phys; 2016 Feb; 18(5):3846-53. PubMed ID: 26763113
    [TBL] [Abstract][Full Text] [Related]  

  • 22. N Doping to ZnO Nanorods for Photoelectrochemical Water Splitting under Visible Light: Engineered Impurity Distribution and Terraced Band Structure.
    Wang M; Ren F; Zhou J; Cai G; Cai L; Hu Y; Wang D; Liu Y; Guo L; Shen S
    Sci Rep; 2015 Aug; 5():12925. PubMed ID: 26262752
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functionalized ZnO@TiO2 nanorod array film loaded with ZnIn(0.25)Cu(0.02)S(1.395) solid-solution: synthesis, characterization and enhanced visible light driven water splitting.
    Wang R; Xu X; Zhang Y; Chang Z; Sun Z; Dong WF
    Nanoscale; 2015 Jul; 7(25):11082-92. PubMed ID: 26055666
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visible-light-responsive TiO2-coated ZnO:I nanorod array films with enhanced photoelectrochemical and photocatalytic performance.
    Wang Y; Zheng YZ; Lu S; Tao X; Che Y; Chen JF
    ACS Appl Mater Interfaces; 2015 Mar; 7(11):6093-101. PubMed ID: 25742121
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrochemical Water Oxidation of Ultrathin Cobalt Oxide-Based Catalyst Supported onto Aligned ZnO Nanorods.
    Koteeswara Reddy N; Winkler S; Koch N; Pinna N
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3226-32. PubMed ID: 26784675
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hierarchical architectures of wrinkle-like ZnFe
    Long J; Wang W; Fu S; Liu L
    J Colloid Interface Sci; 2019 Feb; 536():408-413. PubMed ID: 30380440
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photoelectrochemical water splitting strongly enhanced in fast-grown ZnO nanotree and nanocluster structures.
    Ren X; Sangle A; Zhang S; Yuan S; Zhao Y; Shi L; Hoye RL; Cho S; Li D; MacManus-Driscoll JL
    J Mater Chem A Mater; 2016 Jul; 4(26):10203-10211. PubMed ID: 27774147
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Abnormal Cathodic Photocurrent Generated on an n-Type FeOOH Nanorod-Array Photoelectrode.
    Chen H; Lyu M; Liu G; Wang L
    Chemistry; 2016 Mar; 22(14):4802-8. PubMed ID: 26879339
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Topotactic and Self-Templated Fabrication of Zn
    Patil RP; Mahadik MA; Chae WS; Choi SH; Jang JS
    ACS Appl Mater Interfaces; 2021 Jun; ():. PubMed ID: 34132526
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 1D ZnO/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting.
    Yan L; Zhao W; Liu Z
    Dalton Trans; 2016 Jul; 45(28):11346-52. PubMed ID: 27328331
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sonochemical assisted synthesis of RGO/ZnO nanowire arrays for photoelectrochemical water splitting.
    Khan I; Ibrahim AAM; Sohail M; Qurashi A
    Ultrason Sonochem; 2017 Jul; 37():669-675. PubMed ID: 28427681
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ag nanoparticles-decorated ZnO nanorod array on a mechanical flexible substrate with enhanced optical and antimicrobial properties.
    Chen Y; Tse WH; Chen L; Zhang J
    Nanoscale Res Lett; 2015; 10():106. PubMed ID: 25852401
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Type-II Heterostructure of ZnO and Carbon Dots Demonstrates Enhanced Photoanodic Performance in Photoelectrochemical Water Splitting.
    Mahala C; Sharma MD; Basu M
    Inorg Chem; 2020 May; 59(10):6988-6999. PubMed ID: 32369368
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metformin-Templated Nanoporous ZnO and Covalent Organic Framework Heterojunction Photoanode for Photoelectrochemical Water Oxidation.
    Chatterjee S; Bhanja P; Ghosh D; Kumar P; Kanti Das S; Dalapati S; Bhaumik A
    ChemSusChem; 2021 Jan; 14(1):408-416. PubMed ID: 33052003
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly Enhanced Visible-Light-Driven Photoelectrochemical Performance of ZnO-Modified In
    Li M; Tu X; Wang Y; Su Y; Hu J; Cai B; Lu J; Yang Z; Zhang Y
    Nanomicro Lett; 2018; 10(3):45. PubMed ID: 30393694
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis of novel AuPd nanoparticles decorated one-dimensional ZnO nanorod arrays with enhanced photoelectrochemical water splitting activity.
    Lu Y; Zhang J; Ge L; Han C; Qiu P; Fang S
    J Colloid Interface Sci; 2016 Dec; 483():146-153. PubMed ID: 27552423
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-Powered Photoelectrochemical Biosensor Based on CdS/RGO/ZnO Nanowire Array Heterostructure.
    Zhao K; Yan X; Gu Y; Kang Z; Bai Z; Cao S; Liu Y; Zhang X; Zhang Y
    Small; 2016 Jan; 12(2):245-51. PubMed ID: 26618499
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Localized surface plasmon-enhanced photoelectrochemical water oxidation by inorganic/organic nano-heterostructure comprising NDI-based D-A-D type small molecule.
    Sanke DM; Ghosh NG; Das S; Karmakar HS; Sarkar A; Zade SS
    J Colloid Interface Sci; 2021 Nov; 601():803-815. PubMed ID: 34102408
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simple but Effective Way To Enhance Photoelectrochemical Solar-Water-Splitting Performance of ZnO Nanorod Arrays: Charge-Trapping Zn(OH)
    Baek M; Kim D; Yong K
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2317-2325. PubMed ID: 28045250
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient Solar-Induced Photoelectrochemical Response Using Coupling Semiconductor TiO₂-ZnO Nanorod Film.
    Abd Samad NA; Lai CW; Lau KS; Abd Hamid SB
    Materials (Basel); 2016 Nov; 9(11):. PubMed ID: 28774068
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.