These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 27091486)
1. Unraveling a new circuitry for sleep regulation in Parkinson's disease. Targa AD; Rodrigues LS; Noseda AC; Aurich MF; Andersen ML; Tufik S; da Cunha C; Lima MM Neuropharmacology; 2016 Sep; 108():161-71. PubMed ID: 27091486 [TBL] [Abstract][Full Text] [Related]
2. REM sleep deprivation and dopaminergic D2 receptors modulation increase recognition memory in an animal model of Parkinson's disease. Targa ADS; Noseda ACD; Rodrigues LS; Aurich MF; Lima MMS Behav Brain Res; 2018 Feb; 339():239-248. PubMed ID: 29128393 [TBL] [Abstract][Full Text] [Related]
3. Dopaminergic D2 receptor is a key player in the substantia nigra pars compacta neuronal activation mediated by REM sleep deprivation. Proença MB; Dombrowski PA; Da Cunha C; Fischer L; Ferraz AC; Lima MM Neuropharmacology; 2014 Jan; 76 Pt A():118-26. PubMed ID: 24012539 [TBL] [Abstract][Full Text] [Related]
4. Pedunculopontine tegmental stimulation evokes striatal dopamine efflux by activation of acetylcholine and glutamate receptors in the midbrain and pons of the rat. Forster GL; Blaha CD Eur J Neurosci; 2003 Feb; 17(4):751-62. PubMed ID: 12603265 [TBL] [Abstract][Full Text] [Related]
5. Sleep disturbances in Parkinson's disease: the contribution of dopamine in REM sleep regulation. Lima MM Sleep Med Rev; 2013 Oct; 17(5):367-75. PubMed ID: 23481545 [TBL] [Abstract][Full Text] [Related]
6. The spatiotemporal changes in dopamine, neuromelanin and iron characterizing Parkinson's disease. Biondetti E; Santin MD; Valabrègue R; Mangone G; Gaurav R; Pyatigorskaya N; Hutchison M; Yahia-Cherif L; Villain N; Habert MO; Arnulf I; Leu-Semenescu S; Dodet P; Vila M; Corvol JC; Vidailhet M; Lehéricy S Brain; 2021 Nov; 144(10):3114-3125. PubMed ID: 33978742 [TBL] [Abstract][Full Text] [Related]
7. Early signs of neuronal apoptosis in the substantia nigra pars compacta of the progressive neurodegenerative mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid model of Parkinson's disease. Novikova L; Garris BL; Garris DR; Lau YS Neuroscience; 2006 Jun; 140(1):67-76. PubMed ID: 16533572 [TBL] [Abstract][Full Text] [Related]
8. Accumulation of mitochondrial DNA deletions within dopaminergic neurons triggers neuroprotective mechanisms. Perier C; Bender A; García-Arumí E; Melià MJ; Bové J; Laub C; Klopstock T; Elstner M; Mounsey RB; Teismann P; Prolla T; Andreu AL; Vila M Brain; 2013 Aug; 136(Pt 8):2369-78. PubMed ID: 23884809 [TBL] [Abstract][Full Text] [Related]
9. REM sleep deprivation generates cognitive and neurochemical disruptions in the intranigral rotenone model of Parkinson's disease. Dos Santos AC; Castro MA; Jose EA; Delattre AM; Dombrowski PA; Da Cunha C; Ferraz AC; Lima MM J Neurosci Res; 2013 Nov; 91(11):1508-16. PubMed ID: 23908011 [TBL] [Abstract][Full Text] [Related]
10. Prodromal local sleep disorders in a rat model of Parkinson's disease cholinopathy, hemiparkinsonism and hemiparkinsonism with cholinopathy. Petrovic J; Radovanovic L; Saponjic J Behav Brain Res; 2021 Jan; 397():112957. PubMed ID: 33038348 [TBL] [Abstract][Full Text] [Related]
11. Selective cholinergic depletion of pedunculopontine tegmental nucleus aggravates freezing of gait in parkinsonian rats. Xiao H; Li M; Cai J; Li N; Zhou M; Wen P; Xie Z; Wang Q; Chang J; Zhang W Neurosci Lett; 2017 Oct; 659():92-98. PubMed ID: 28803956 [TBL] [Abstract][Full Text] [Related]
12. Dopamine D₁ and D₂ receptor subtypes functional regulation in corpus striatum of unilateral rotenone lesioned Parkinson's rat model: effect of serotonin, dopamine and norepinephrine. Paul J; Nandhu MS; Kuruvilla KP; Paulose CS Neurol Res; 2010 Nov; 32(9):918-24. PubMed ID: 20887679 [TBL] [Abstract][Full Text] [Related]
13. N-methyl-D-aspartate receptor blockade attenuates D1 dopamine receptor modulation of neuronal activity in rat substantia nigra. Huang KX; Bergstrom DA; Ruskin DN; Walters JR Synapse; 1998 Sep; 30(1):18-29. PubMed ID: 9704877 [TBL] [Abstract][Full Text] [Related]
14. Dopaminergic but not cholinergic neurodegeneration is correlated with gait disturbances in PINK1 knockout rats. DeAngelo VM; Hilliard JD; McConnell GC Behav Brain Res; 2022 Jan; 417():113575. PubMed ID: 34534596 [TBL] [Abstract][Full Text] [Related]
15. The significance of rotational behavior and sensitivity of striatal dopamine receptors in hemiparkinsonian rats: A comparative study of lactacystin and 6-OHDA. Konieczny J; Czarnecka A; Lenda T; Kamińska K; Antkiewicz-Michaluk L Neuroscience; 2017 Jan; 340():308-318. PubMed ID: 27826109 [TBL] [Abstract][Full Text] [Related]
16. Neuroprotective effect of curcumin-I in copper-induced dopaminergic neurotoxicity in rats: A possible link with Parkinson's disease. Abbaoui A; Chatoui H; El Hiba O; Gamrani H Neurosci Lett; 2017 Nov; 660():103-108. PubMed ID: 28919537 [TBL] [Abstract][Full Text] [Related]
17. Ursolic acid attenuates oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in MPTP-induced Parkinsonian mouse model. Rai SN; Yadav SK; Singh D; Singh SP J Chem Neuroanat; 2016 Jan; 71():41-9. PubMed ID: 26686287 [TBL] [Abstract][Full Text] [Related]
19. Putative role of monoamines in the antidepressant-like mechanism induced by striatal MT2 blockade. Noseda AC; Rodrigues LS; Targa AD; Aurich MF; Vital MA; Da Cunha C; Lima MM Behav Brain Res; 2014 Dec; 275():136-45. PubMed ID: 25218873 [TBL] [Abstract][Full Text] [Related]
20. Electrocortical high frequency activity and respiratory entrainment in 6-hydroxydopamine model of Parkinson's disease. Cavelli M; Prunell G; Costa G; Velásquez N; Gonzalez J; Castro-Zaballa S; Lima MMS; Torterolo P Brain Res; 2019 Dec; 1724():146439. PubMed ID: 31499018 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]