These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Microfluidic Assembly of a Multifunctional Tailorable Composite System Designed for Site Specific Combined Oral Delivery of Peptide Drugs. Araújo F; Shrestha N; Shahbazi MA; Liu D; Herranz-Blanco B; Mäkilä EM; Salonen JJ; Hirvonen JT; Granja PL; Sarmento B; Santos HA ACS Nano; 2015 Aug; 9(8):8291-302. PubMed ID: 26235314 [TBL] [Abstract][Full Text] [Related]
5. Mechanisms to Elevate Endogenous GLP-1 Beyond Injectable GLP-1 Analogs and Metabolic Surgery. Briere DA; Bueno AB; Gunn EJ; Michael MD; Sloop KW Diabetes; 2018 Feb; 67(2):309-320. PubMed ID: 29203510 [TBL] [Abstract][Full Text] [Related]
6. Chitosan-based therapeutic nanoparticles for combination gene therapy and gene silencing of in vitro cell lines relevant to type 2 diabetes. Jean M; Alameh M; De Jesus D; Thibault M; Lavertu M; Darras V; Nelea M; Buschmann MD; Merzouki A Eur J Pharm Sci; 2012 Jan; 45(1-2):138-49. PubMed ID: 22085632 [TBL] [Abstract][Full Text] [Related]
7. Constitutive increase in active GLP-1 levels by the DPP4 inhibitor ASP4000 on a new meal tolerance test in Zucker fatty rats. Tanaka-Amino K; Hatakeyama Y; Takakura S; Mutoh S Pharmacol Res; 2009 Oct; 60(4):264-9. PubMed ID: 19520592 [TBL] [Abstract][Full Text] [Related]
8. Novel biological action of the dipeptidylpeptidase-IV inhibitor, sitagliptin, as a glucagon-like peptide-1 secretagogue. Sangle GV; Lauffer LM; Grieco A; Trivedi S; Iakoubov R; Brubaker PL Endocrinology; 2012 Feb; 153(2):564-73. PubMed ID: 22186413 [TBL] [Abstract][Full Text] [Related]
9. Intestinal Sodium Glucose Cotransporter 1 Inhibition Enhances Glucagon-Like Peptide-1 Secretion in Normal and Diabetic Rodents. Oguma T; Nakayama K; Kuriyama C; Matsushita Y; Yoshida K; Hikida K; Obokata N; Tsuda-Tsukimoto M; Saito A; Arakawa K; Ueta K; Shiotani M J Pharmacol Exp Ther; 2015 Sep; 354(3):279-89. PubMed ID: 26105952 [TBL] [Abstract][Full Text] [Related]
10. The effect of combined treatment with canagliflozin and teneligliptin on glucose intolerance in Zucker diabetic fatty rats. Oguma T; Kuriyama C; Nakayama K; Matsushita Y; Yoshida K; Kiuchi S; Ikenaga Y; Nakamaru Y; Hikida K; Saito A; Arakawa K; Oka K; Ueta K; Shiotani M J Pharmacol Sci; 2015 Apr; 127(4):456-61. PubMed ID: 25892328 [TBL] [Abstract][Full Text] [Related]
11. Preparation, characterization, and application of biotinylated and biotin-PEGylated glucagon-like peptide-1 analogues for enhanced oral delivery. Chae SY; Jin CH; Shin HJ; Youn YS; Lee S; Lee KC Bioconjug Chem; 2008 Jan; 19(1):334-41. PubMed ID: 18078308 [TBL] [Abstract][Full Text] [Related]
12. Update on incretin hormones. Phillips LK; Prins JB Ann N Y Acad Sci; 2011 Dec; 1243():E55-74. PubMed ID: 22545749 [TBL] [Abstract][Full Text] [Related]
13. Chronic administration of voglibose, an alpha-glucosidase inhibitor, increases active glucagon-like peptide-1 levels by increasing its secretion and decreasing dipeptidyl peptidase-4 activity in ob/ob mice. Moritoh Y; Takeuchi K; Hazama M J Pharmacol Exp Ther; 2009 May; 329(2):669-76. PubMed ID: 19208898 [TBL] [Abstract][Full Text] [Related]
14. Dipeptidyl peptidase IV inhibitor treatment stimulates beta-cell survival and islet neogenesis in streptozotocin-induced diabetic rats. Pospisilik JA; Martin J; Doty T; Ehses JA; Pamir N; Lynn FC; Piteau S; Demuth HU; McIntosh CH; Pederson RA Diabetes; 2003 Mar; 52(3):741-50. PubMed ID: 12606516 [TBL] [Abstract][Full Text] [Related]
15. Incretin-based therapy of type 2 diabetes mellitus. Knop FK; Vilsbøll T; Holst JJ Curr Protein Pept Sci; 2009 Feb; 10(1):46-55. PubMed ID: 19275672 [TBL] [Abstract][Full Text] [Related]
16. Novel strategy for oral peptide delivery in incretin-based diabetes treatment. Xu Y; Van Hul M; Suriano F; Préat V; Cani PD; Beloqui A Gut; 2020 May; 69(5):911-919. PubMed ID: 31401561 [TBL] [Abstract][Full Text] [Related]
17. Antihyperglycemic effects of ASP8497 in streptozotocin-nicotinamide induced diabetic rats: comparison with other dipeptidyl peptidase-IV inhibitors. Tahara A; Matsuyama-Yokono A; Nakano R; Someya Y; Hayakawa M; Shibasaki M Pharmacol Rep; 2009; 61(5):899-908. PubMed ID: 19904014 [TBL] [Abstract][Full Text] [Related]
18. A Novel Dipeptidyl Peptidase IV Inhibitory Tea Peptide Improves Pancreatic β-Cell Function and Reduces α-Cell Proliferation in Streptozotocin-Induced Diabetic Mice. Lu Y; Lu P; Wang Y; Fang X; Wu J; Wang X Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30646613 [TBL] [Abstract][Full Text] [Related]
19. A novel long acting DPP-IV inhibitor PKF-275-055 stimulates β-cell proliferation resulting in improved glucose homeostasis in diabetic rats. Akarte AS; Srinivasan BP; Gandhi S Biochem Pharmacol; 2012 Jan; 83(2):241-52. PubMed ID: 22015634 [TBL] [Abstract][Full Text] [Related]
20. Dipeptidyl peptidase inhibitor therapy in type 2 diabetes: Control of the incretin axis and regulation of postprandial glucose and lipid metabolism. Mulvihill EE Peptides; 2018 Feb; 100():158-164. PubMed ID: 29412815 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]