These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 27091697)
21. The entero-insular axis: implications for human metabolism. Ranganath LR Clin Chem Lab Med; 2008; 46(1):43-56. PubMed ID: 18020966 [TBL] [Abstract][Full Text] [Related]
22. Teneligliptin improves glycemic control with the reduction of postprandial insulin requirement in Japanese diabetic patients. Tsuchimochi W; Ueno H; Yamashita E; Tsubouchi C; Sakoda H; Nakamura S; Nakazato M Endocr J; 2015; 62(1):13-20. PubMed ID: 25252844 [TBL] [Abstract][Full Text] [Related]
23. Modified human glucagon-like peptide-1 (GLP-1) produced in E. coli has a long-acting therapeutic effect in type 2 diabetic mice. Xu F; Wang KY; Wang N; Li G; Liu D PLoS One; 2017; 12(7):e0181939. PubMed ID: 28750064 [TBL] [Abstract][Full Text] [Related]
24. A novel multi-epitope vaccine based on Dipeptidyl Peptidase 4 prevents streptozotocin-induced diabetes by producing anti-DPP4 antibody and immunomodulatory effect in C57BL/6J mice. Li Z; Fang J; Jiao R; Wei X; Ma Y; Liu X; Cheng P; Li T Biomed Pharmacother; 2017 May; 89():1467-1475. PubMed ID: 28376584 [TBL] [Abstract][Full Text] [Related]
25. Twelve weeks treatment with the DPP-4 inhibitor, sitagliptin, prevents degradation of peptide YY and improves glucose and non-glucose induced insulin secretion in patients with type 2 diabetes mellitus. Aaboe K; Knop FK; Vilsbøll T; Deacon CF; Holst JJ; Madsbad S; Krarup T Diabetes Obes Metab; 2010 Apr; 12(4):323-33. PubMed ID: 20380653 [TBL] [Abstract][Full Text] [Related]
26. Oral Delivery of Pentameric Glucagon-Like Peptide-1 by Recombinant Lactobacillus in Diabetic Rats. Lin Y; Krogh-Andersen K; Pelletier J; Marcotte H; Östenson CG; Hammarström L PLoS One; 2016; 11(9):e0162733. PubMed ID: 27610615 [TBL] [Abstract][Full Text] [Related]
27. Clinical use of GLP-1 agonists and DPP4 inhibitors. Tuch BE Pancreatology; 2016; 16(1):8-9. PubMed ID: 26138513 [TBL] [Abstract][Full Text] [Related]
28. Dipeptidyl peptidase-4 inhibitor treatment induces a greater increase in plasma levels of bioactive GIP than GLP-1 in non-diabetic subjects. Yanagimachi T; Fujita Y; Takeda Y; Honjo J; Sakagami H; Kitsunai H; Takiyama Y; Abiko A; Makino Y; Kieffer TJ; Haneda M Mol Metab; 2017 Feb; 6(2):226-231. PubMed ID: 28180064 [TBL] [Abstract][Full Text] [Related]
29. Glycaemic efficacy of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors as add-on therapy to metformin in subjects with type 2 diabetes-a review and meta analysis. Deacon CF; Mannucci E; Ahrén B Diabetes Obes Metab; 2012 Aug; 14(8):762-7. PubMed ID: 22471248 [TBL] [Abstract][Full Text] [Related]
30. Pleiotropic effects of glucagon-like peptide-1 (GLP-1)-based therapies on vascular complications in diabetes. Yamagishi S; Matsui T Curr Pharm Des; 2011 Dec; 17(38):4379-85. PubMed ID: 22204436 [TBL] [Abstract][Full Text] [Related]
31. Combination therapy of dipeptidyl peptidase-4 inhibitors and metformin in type 2 diabetes: rationale and evidence. Liu Y; Hong T Diabetes Obes Metab; 2014 Feb; 16(2):111-7. PubMed ID: 23668534 [TBL] [Abstract][Full Text] [Related]
32. GLP-1 Analogs and DPP-4 Inhibitors in Type 2 Diabetes Therapy: Review of Head-to-Head Clinical Trials. Gilbert MP; Pratley RE Front Endocrinol (Lausanne); 2020; 11():178. PubMed ID: 32308645 [TBL] [Abstract][Full Text] [Related]
33. The impact of nanoparticles on the mucosal translocation and transport of GLP-1 across the intestinal epithelium. Araújo F; Shrestha N; Shahbazi MA; Fonte P; Mäkilä EM; Salonen JJ; Hirvonen JT; Granja PL; Santos HA; Sarmento B Biomaterials; 2014 Nov; 35(33):9199-207. PubMed ID: 25109441 [TBL] [Abstract][Full Text] [Related]
34. Dipeptidyl peptidase-4 inhibition in diabetic rats leads to activation of the transcription factor CREB in β-cells. Pugazhenthi S; Qin L; Bouchard R Eur J Pharmacol; 2015 May; 755():42-9. PubMed ID: 25720341 [TBL] [Abstract][Full Text] [Related]
35. Nanoparticles induced by embedding self-assembling cassette into glucagon-like peptide 1 for improving in vivo stability. Li Y; Cui T; Kong X; Yi X; Kong D; Zhang J; Liu C; Gong M FASEB J; 2018 Jun; 32(6):2992-3004. PubMed ID: 29401602 [TBL] [Abstract][Full Text] [Related]
36. A Physiologically-Based Quantitative Systems Pharmacology Model of the Incretin Hormones GLP-1 and GIP and the DPP4 Inhibitor Sitagliptin. Balazki P; Schaller S; Eissing T; Lehr T CPT Pharmacometrics Syst Pharmacol; 2020 Jun; 9(6):353-362. PubMed ID: 32543789 [TBL] [Abstract][Full Text] [Related]
37. RBx-0597, a potent, selective and slow-binding inhibitor of dipeptidyl peptidase-IV for the treatment of type 2 diabetes. Singh S; Roy S; Sethi S; Benjamin B; Sundaram S; Khanna V; Kandalkar SR; Pal C; Kant R; Patra AK; Rayasam G; Mittra S; Saini KS; Paliwal J; Chugh A; Ahmed S; Sattigeri J; Cliff I; Ray A; Bansal VS; Bhatnagar PK; Davis JA Eur J Pharmacol; 2011 Feb; 652(1-3):157-63. PubMed ID: 20540938 [TBL] [Abstract][Full Text] [Related]
38. [Glucagon-like peptide-1 (GLP-1), new target for the treatment of type 2 diabetes]. Scheen AJ Rev Med Liege; 2007 Apr; 62(4):217-21. PubMed ID: 17566392 [TBL] [Abstract][Full Text] [Related]
39. A novel dipeptidyl peptidase-4 inhibitor, alogliptin (SYR-322), is effective in diabetic rats with sulfonylurea-induced secondary failure. Asakawa T; Moritoh Y; Kataoka O; Suzuki N; Takeuchi K; Odaka H Life Sci; 2009 Jul; 85(3-4):122-6. PubMed ID: 19427871 [TBL] [Abstract][Full Text] [Related]
40. Peptide degradation and the role of DPP-4 inhibitors in the treatment of type 2 diabetes. Deacon CF Peptides; 2018 Feb; 100():150-157. PubMed ID: 29412814 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]