These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 27091704)

  • 1. Bridge helix bending promotes RNA polymerase II backtracking through a critical and conserved threonine residue.
    Da LT; Pardo-Avila F; Xu L; Silva DA; Zhang L; Gao X; Wang D; Huang X
    Nat Commun; 2016 Apr; 7():11244. PubMed ID: 27091704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of bridge helix bending in RNA polymerase II.
    Wang ZF; Fu YB; Wang PY; Xie P
    Proteins; 2017 Apr; 85(4):614-629. PubMed ID: 28056486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Millisecond dynamics of RNA polymerase II translocation at atomic resolution.
    Silva DA; Weiss DR; Pardo Avila F; Da LT; Levitt M; Wang D; Huang X
    Proc Natl Acad Sci U S A; 2014 May; 111(21):7665-70. PubMed ID: 24753580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis of RNA polymerase II backtracking, arrest and reactivation.
    Cheung AC; Cramer P
    Nature; 2011 Mar; 471(7337):249-53. PubMed ID: 21346759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis of transcription: backtracked RNA polymerase II at 3.4 angstrom resolution.
    Wang D; Bushnell DA; Huang X; Westover KD; Levitt M; Kornberg RD
    Science; 2009 May; 324(5931):1203-6. PubMed ID: 19478184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis of transcription: mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA.
    Sydow JF; Brueckner F; Cheung AC; Damsma GE; Dengl S; Lehmann E; Vassylyev D; Cramer P
    Mol Cell; 2009 Jun; 34(6):710-21. PubMed ID: 19560423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mismatch-induced conformational distortions in polymerase beta support an induced-fit mechanism for fidelity.
    Arora K; Beard WA; Wilson SH; Schlick T
    Biochemistry; 2005 Oct; 44(40):13328-41. PubMed ID: 16201758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational coupling, bridge helix dynamics and active site dehydration in catalysis by RNA polymerase.
    Seibold SA; Singh BN; Zhang C; Kireeva M; Domecq C; Bouchard A; Nazione AM; Feig M; Cukier RI; Coulombe B; Kashlev M; Hampsey M; Burton ZF
    Biochim Biophys Acta; 2010 Aug; 1799(8):575-87. PubMed ID: 20478425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Backtracking dynamics of RNA polymerase: pausing and error correction.
    Sahoo M; Klumpp S
    J Phys Condens Matter; 2013 Sep; 25(37):374104. PubMed ID: 23945272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution.
    Gnatt AL; Cramer P; Fu J; Bushnell DA; Kornberg RD
    Science; 2001 Jun; 292(5523):1876-82. PubMed ID: 11313499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular basis of RNA-dependent RNA polymerase II activity.
    Lehmann E; Brueckner F; Cramer P
    Nature; 2007 Nov; 450(7168):445-9. PubMed ID: 18004386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidation of the Dynamics of Transcription Elongation by RNA Polymerase II using Kinetic Network Models.
    Zhang L; Pardo-Avila F; Unarta IC; Cheung PP; Wang G; Wang D; Huang X
    Acc Chem Res; 2016 Apr; 49(4):687-94. PubMed ID: 26991064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS.
    Kettenberger H; Armache KJ; Cramer P
    Mol Cell; 2004 Dec; 16(6):955-65. PubMed ID: 15610738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis of transcription: nucleotide selection by rotation in the RNA polymerase II active center.
    Westover KD; Bushnell DA; Kornberg RD
    Cell; 2004 Nov; 119(4):481-9. PubMed ID: 15537538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of RNA:DNA hybrid stability, RNA structure, and active site conformation in pausing by human RNA polymerase II.
    Palangat M; Landick R
    J Mol Biol; 2001 Aug; 311(2):265-82. PubMed ID: 11478860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis of transcription: an RNA polymerase II-TFIIB cocrystal at 4.5 Angstroms.
    Bushnell DA; Westover KD; Davis RE; Kornberg RD
    Science; 2004 Feb; 303(5660):983-8. PubMed ID: 14963322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of an RNA polymerase II-RNA inhibitor complex elucidates transcription regulation by noncoding RNAs.
    Kettenberger H; Eisenführ A; Brueckner F; Theis M; Famulok M; Cramer P
    Nat Struct Mol Biol; 2006 Jan; 13(1):44-8. PubMed ID: 16341226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis of transcription inhibition by alpha-amanitin and implications for RNA polymerase II translocation.
    Brueckner F; Cramer P
    Nat Struct Mol Biol; 2008 Aug; 15(8):811-8. PubMed ID: 18552824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nature of the nucleosomal barrier to RNA polymerase II.
    Kireeva ML; Hancock B; Cremona GH; Walter W; Studitsky VM; Kashlev M
    Mol Cell; 2005 Apr; 18(1):97-108. PubMed ID: 15808512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Model of RNA Polymerase II Elongation Complex with Complete Transcription Bubble Reveals NTP Entry Routes.
    Zhang L; Silva DA; Pardo-Avila F; Wang D; Huang X
    PLoS Comput Biol; 2015 Jul; 11(7):e1004354. PubMed ID: 26134169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.