These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 27091980)

  • 1. Cu isotopes in marine black shales record the Great Oxidation Event.
    Chi Fru E; Rodríguez NP; Partin CA; Lalonde SV; Andersson P; Weiss DJ; El Albani A; Rodushkin I; Konhauser KO
    Proc Natl Acad Sci U S A; 2016 May; 113(18):4941-6. PubMed ID: 27091980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geochemistry of approximately 1.9 Ga sedimentary rocks from northeastern Labrador, Canada.
    Hayashi KI; Fujisawa H; Holland HD; Ohmoto H
    Geochim Cosmochim Acta; 1997; 61(19):4115-37. PubMed ID: 11540490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere.
    Kah LC; Lyons TW; Frank TD
    Nature; 2004 Oct; 431(7010):834-8. PubMed ID: 15483609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isotopic constraints on biogeochemical cycling of copper in the ocean.
    Takano S; Tanimizu M; Hirata T; Sohrin Y
    Nat Commun; 2014 Dec; 5():5663. PubMed ID: 25476795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid oxygenation of Earth's atmosphere 2.33 billion years ago.
    Luo G; Ono S; Beukes NJ; Wang DT; Xie S; Summons RE
    Sci Adv; 2016 May; 2(5):e1600134. PubMed ID: 27386544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event.
    Konhauser KO; Lalonde SV; Planavsky NJ; Pecoits E; Lyons TW; Mojzsis SJ; Rouxel OJ; Barley ME; Rosìere C; Fralick PW; Kump LR; Bekker A
    Nature; 2011 Oct; 478(7369):369-73. PubMed ID: 22012395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selenium isotopes record extensive marine suboxia during the Great Oxidation Event.
    Kipp MA; Stüeken EE; Bekker A; Buick R
    Proc Natl Acad Sci U S A; 2017 Jan; 114(5):875-880. PubMed ID: 28096405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracing the stepwise oxygenation of the Proterozoic ocean.
    Scott C; Lyons TW; Bekker A; Shen Y; Poulton SW; Chu X; Anbar AD
    Nature; 2008 Mar; 452(7186):456-9. PubMed ID: 18368114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sedimentary sulfur isotopes and Neoarchean ocean oxygenation.
    Fakhraee M; Crowe SA; Katsev S
    Sci Adv; 2018 Jan; 4(1):e1701835. PubMed ID: 29376118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Siderophile Elements and Coupled Fe-Os Isotope Signatures in the Temagami Iron Formation, Canada: Possible Signatures of Neoarchean Seawater Chemistry and Earth's Oxygenation History.
    Schulz T; Viehmann S; Hezel DC; Koeberl C; Bau M
    Astrobiology; 2021 Aug; 21(8):924-939. PubMed ID: 34406808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ trace metal analysis of Neoarchaean--Ordovician shallow-marine microbial-carbonate-hosted pyrites.
    Gallagher M; Turner EC; Kamber BS
    Geobiology; 2015 Jul; 13(4):316-39. PubMed ID: 25917609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Zn isotope perspective on the rise of continents.
    Pons ML; Fujii T; Rosing M; Quitté G; Télouk P; Albarède F
    Geobiology; 2013 May; 11(3):201-14. PubMed ID: 23421593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation.
    Sperling EA; Wolock CJ; Morgan AS; Gill BC; Kunzmann M; Halverson GP; Macdonald FA; Knoll AH; Johnston DT
    Nature; 2015 Jul; 523(7561):451-4. PubMed ID: 26201598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What the ~1.4 Ga Xiamaling Formation can and cannot tell us about the mid-Proterozoic ocean.
    Diamond CW; Planavsky NJ; Wang C; Lyons TW
    Geobiology; 2018 May; 16(3):219-236. PubMed ID: 29577549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proterozoic ocean redox and biogeochemical stasis.
    Reinhard CT; Planavsky NJ; Robbins LJ; Partin CA; Gill BC; Lalonde SV; Bekker A; Konhauser KO; Lyons TW
    Proc Natl Acad Sci U S A; 2013 Apr; 110(14):5357-62. PubMed ID: 23515332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Persistence of deeply sourced iron in the Pacific Ocean.
    Horner TJ; Williams HM; Hein JR; Saito MA; Burton KW; Halliday AN; Nielsen SG
    Proc Natl Acad Sci U S A; 2015 Feb; 112(5):1292-7. PubMed ID: 25605900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of iron and oxygen biogeochemical cycles during the Precambrian.
    Watanabe Y; Tajika E; Ozaki K
    Geobiology; 2023 Nov; 21(6):689-707. PubMed ID: 37622474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon cycle inverse modeling suggests large changes in fractional organic burial are consistent with the carbon isotope record and may have contributed to the rise of oxygen.
    Krissansen-Totton J; Kipp MA; Catling DC
    Geobiology; 2021 Jul; 19(4):342-363. PubMed ID: 33764615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin.
    Shen Y; Knoll AH; Walter MR
    Nature; 2003 Jun; 423(6940):632-5. PubMed ID: 12789336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioturbation and directionality in Earth's carbon isotope record across the Neoproterozoic-Cambrian transition.
    Boyle RA; Dahl TW; Bjerrum CJ; Canfield DE
    Geobiology; 2018 May; 16(3):252-278. PubMed ID: 29498810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.