These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Synapse-Centric Mapping of Cortical Models to the SpiNNaker Neuromorphic Architecture. Knight JC; Furber SB Front Neurosci; 2016; 10():420. PubMed ID: 27683540 [TBL] [Abstract][Full Text] [Related]
3. Reducing the computational footprint for real-time BCPNN learning. Vogginger B; Schüffny R; Lansner A; Cederström L; Partzsch J; Höppner S Front Neurosci; 2015; 9():2. PubMed ID: 25657618 [TBL] [Abstract][Full Text] [Related]
4. Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the Neural Network Simulation Software NEST for a Full-Scale Cortical Microcircuit Model. van Albada SJ; Rowley AG; Senk J; Hopkins M; Schmidt M; Stokes AB; Lester DR; Diesmann M; Furber SB Front Neurosci; 2018; 12():291. PubMed ID: 29875620 [TBL] [Abstract][Full Text] [Related]
5. Neuromodulated Synaptic Plasticity on the SpiNNaker Neuromorphic System. Mikaitis M; Pineda García G; Knight JC; Furber SB Front Neurosci; 2018; 12():105. PubMed ID: 29535600 [TBL] [Abstract][Full Text] [Related]
7. A forecast-based STDP rule suitable for neuromorphic implementation. Davies S; Galluppi F; Rast AD; Furber SB Neural Netw; 2012 Aug; 32():3-14. PubMed ID: 22386500 [TBL] [Abstract][Full Text] [Related]
8. A framework for plasticity implementation on the SpiNNaker neural architecture. Galluppi F; Lagorce X; Stromatias E; Pfeiffer M; Plana LA; Furber SB; Benosman RB Front Neurosci; 2014; 8():429. PubMed ID: 25653580 [TBL] [Abstract][Full Text] [Related]
9. Mapping the BCPNN Learning Rule to a Memristor Model. Wang D; Xu J; Stathis D; Zhang L; Li F; Lansner A; Hemani A; Yang Y; Herman P; Zou Z Front Neurosci; 2021; 15():750458. PubMed ID: 34955716 [TBL] [Abstract][Full Text] [Related]
10. Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform. Patiño-Saucedo A; Rostro-Gonzalez H; Serrano-Gotarredona T; Linares-Barranco B Neural Netw; 2020 Jan; 121():319-328. PubMed ID: 31590013 [TBL] [Abstract][Full Text] [Related]
11. Parallelization of Neural Processing on Neuromorphic Hardware. Peres L; Rhodes O Front Neurosci; 2022; 16():867027. PubMed ID: 35620669 [TBL] [Abstract][Full Text] [Related]
12. Towards a Bio-Inspired Real-Time Neuromorphic Cerebellum. Bogdan PA; Marcinnò B; Casellato C; Casali S; Rowley AGD; Hopkins M; Leporati F; D'Angelo E; Rhodes O Front Cell Neurosci; 2021; 15():622870. PubMed ID: 34135732 [TBL] [Abstract][Full Text] [Related]
13. Optimizing BCPNN Learning Rule for Memory Access. Yang Y; Stathis D; Jordão R; Hemani A; Lansner A Front Neurosci; 2020; 14():878. PubMed ID: 32982673 [TBL] [Abstract][Full Text] [Related]
14. E-prop on SpiNNaker 2: Exploring online learning in spiking RNNs on neuromorphic hardware. Rostami A; Vogginger B; Yan Y; Mayr CG Front Neurosci; 2022; 16():1018006. PubMed ID: 36518534 [TBL] [Abstract][Full Text] [Related]
15. A Spiking Neural Network Model of the Lateral Geniculate Nucleus on the SpiNNaker Machine. Sen-Bhattacharya B; Serrano-Gotarredona T; Balassa L; Bhattacharya A; Stokes AB; Rowley A; Sugiarto I; Furber S Front Neurosci; 2017; 11():454. PubMed ID: 28848380 [TBL] [Abstract][Full Text] [Related]
16. Liquid State Machine on SpiNNaker for Spatio-Temporal Classification Tasks. Patiño-Saucedo A; Rostro-González H; Serrano-Gotarredona T; Linares-Barranco B Front Neurosci; 2022; 16():819063. PubMed ID: 35360182 [TBL] [Abstract][Full Text] [Related]
17. Real-time cortical simulation on neuromorphic hardware. Rhodes O; Peres L; Rowley AGD; Gait A; Plana LA; Brenninkmeijer C; Furber SB Philos Trans A Math Phys Eng Sci; 2020 Feb; 378(2164):20190160. PubMed ID: 31865885 [TBL] [Abstract][Full Text] [Related]
18. Beyond LIF Neurons on Neuromorphic Hardware. Ward M; Rhodes O Front Neurosci; 2022; 16():881598. PubMed ID: 35864984 [TBL] [Abstract][Full Text] [Related]
19. Organizing Sequential Memory in a Neuromorphic Device Using Dynamic Neural Fields. Kreiser R; Aathmani D; Qiao N; Indiveri G; Sandamirskaya Y Front Neurosci; 2018; 12():717. PubMed ID: 30524218 [TBL] [Abstract][Full Text] [Related]
20. An unsupervised neuromorphic clustering algorithm. Diamond A; Schmuker M; Nowotny T Biol Cybern; 2019 Aug; 113(4):423-437. PubMed ID: 30944983 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]