BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

479 related articles for article (PubMed ID: 27092061)

  • 1. Large-Scale Simulations of Plastic Neural Networks on Neuromorphic Hardware.
    Knight JC; Tully PJ; Kaplan BA; Lansner A; Furber SB
    Front Neuroanat; 2016; 10():37. PubMed ID: 27092061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synapse-Centric Mapping of Cortical Models to the SpiNNaker Neuromorphic Architecture.
    Knight JC; Furber SB
    Front Neurosci; 2016; 10():420. PubMed ID: 27683540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reducing the computational footprint for real-time BCPNN learning.
    Vogginger B; Schüffny R; Lansner A; Cederström L; Partzsch J; Höppner S
    Front Neurosci; 2015; 9():2. PubMed ID: 25657618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the Neural Network Simulation Software NEST for a Full-Scale Cortical Microcircuit Model.
    van Albada SJ; Rowley AG; Senk J; Hopkins M; Schmidt M; Stokes AB; Lester DR; Diesmann M; Furber SB
    Front Neurosci; 2018; 12():291. PubMed ID: 29875620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuromodulated Synaptic Plasticity on the SpiNNaker Neuromorphic System.
    Mikaitis M; Pineda García G; Knight JC; Furber SB
    Front Neurosci; 2018; 12():105. PubMed ID: 29535600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuromorphic Sentiment Analysis Using Spiking Neural Networks.
    Chunduri RK; Perera DG
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A forecast-based STDP rule suitable for neuromorphic implementation.
    Davies S; Galluppi F; Rast AD; Furber SB
    Neural Netw; 2012 Aug; 32():3-14. PubMed ID: 22386500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A framework for plasticity implementation on the SpiNNaker neural architecture.
    Galluppi F; Lagorce X; Stromatias E; Pfeiffer M; Plana LA; Furber SB; Benosman RB
    Front Neurosci; 2014; 8():429. PubMed ID: 25653580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping the BCPNN Learning Rule to a Memristor Model.
    Wang D; Xu J; Stathis D; Zhang L; Li F; Lansner A; Hemani A; Yang Y; Herman P; Zou Z
    Front Neurosci; 2021; 15():750458. PubMed ID: 34955716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform.
    Patiño-Saucedo A; Rostro-Gonzalez H; Serrano-Gotarredona T; Linares-Barranco B
    Neural Netw; 2020 Jan; 121():319-328. PubMed ID: 31590013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallelization of Neural Processing on Neuromorphic Hardware.
    Peres L; Rhodes O
    Front Neurosci; 2022; 16():867027. PubMed ID: 35620669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards a Bio-Inspired Real-Time Neuromorphic Cerebellum.
    Bogdan PA; Marcinnò B; Casellato C; Casali S; Rowley AGD; Hopkins M; Leporati F; D'Angelo E; Rhodes O
    Front Cell Neurosci; 2021; 15():622870. PubMed ID: 34135732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing BCPNN Learning Rule for Memory Access.
    Yang Y; Stathis D; Jordão R; Hemani A; Lansner A
    Front Neurosci; 2020; 14():878. PubMed ID: 32982673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. E-prop on SpiNNaker 2: Exploring online learning in spiking RNNs on neuromorphic hardware.
    Rostami A; Vogginger B; Yan Y; Mayr CG
    Front Neurosci; 2022; 16():1018006. PubMed ID: 36518534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Spiking Neural Network Model of the Lateral Geniculate Nucleus on the SpiNNaker Machine.
    Sen-Bhattacharya B; Serrano-Gotarredona T; Balassa L; Bhattacharya A; Stokes AB; Rowley A; Sugiarto I; Furber S
    Front Neurosci; 2017; 11():454. PubMed ID: 28848380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid State Machine on SpiNNaker for Spatio-Temporal Classification Tasks.
    Patiño-Saucedo A; Rostro-González H; Serrano-Gotarredona T; Linares-Barranco B
    Front Neurosci; 2022; 16():819063. PubMed ID: 35360182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time cortical simulation on neuromorphic hardware.
    Rhodes O; Peres L; Rowley AGD; Gait A; Plana LA; Brenninkmeijer C; Furber SB
    Philos Trans A Math Phys Eng Sci; 2020 Feb; 378(2164):20190160. PubMed ID: 31865885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond LIF Neurons on Neuromorphic Hardware.
    Ward M; Rhodes O
    Front Neurosci; 2022; 16():881598. PubMed ID: 35864984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organizing Sequential Memory in a Neuromorphic Device Using Dynamic Neural Fields.
    Kreiser R; Aathmani D; Qiao N; Indiveri G; Sandamirskaya Y
    Front Neurosci; 2018; 12():717. PubMed ID: 30524218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An unsupervised neuromorphic clustering algorithm.
    Diamond A; Schmuker M; Nowotny T
    Biol Cybern; 2019 Aug; 113(4):423-437. PubMed ID: 30944983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.