These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 27092403)

  • 1. 18.4%-Efficient Heterojunction Si Solar Cells Using Optimized ITO/Top Electrode.
    Kim N; Um HD; Choi I; Kim KH; Seo K
    ACS Appl Mater Interfaces; 2016 May; 8(18):11412-7. PubMed ID: 27092403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct electrical contact of slanted ITO film on axial p-n junction silicon nanowire solar cells.
    Lee YJ; Yao YC; Yang CH
    Opt Express; 2013 Jan; 21 Suppl 1():A7-14. PubMed ID: 23389277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Embedded Metal Electrode for Organic-Inorganic Hybrid Nanowire Solar Cells.
    Um HD; Choi D; Choi A; Seo JH; Seo K
    ACS Nano; 2017 Jun; 11(6):6218-6224. PubMed ID: 28531350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Buried MoO
    Xia Z; Gao P; Sun T; Wu H; Tan Y; Song T; Lee ST; Sun B
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13767-13773. PubMed ID: 29608047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interface control of semiconducting metal oxide layers for efficient and stable inverted polymer solar cells with open-circuit voltages over 1.0 volt.
    Yin Z; Zheng Q; Chen SC; Cai D
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):9015-25. PubMed ID: 23984993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanophotonic light trapping with patterned transparent conductive oxides.
    Vasudev AP; Schuller JA; Brongersma ML
    Opt Express; 2012 May; 20(10):A385-94. PubMed ID: 22712089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.
    Chou SY; Ding W
    Opt Express; 2013 Jan; 21 Suppl 1():A60-76. PubMed ID: 23389276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of Double Layer Indium Tin Oxide in Silicon Hetero-Junction Solar Cells.
    Lee AR; Lee DW; Lee SH; Bhopal MF; Kim HJ; Lim KJ; Shin WS; Lee SH; Kim J
    J Nanosci Nanotechnol; 2020 Jan; 20(1):161-167. PubMed ID: 31383151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene-Based Electrodes for Silicon Heterojunction Solar Cell Technology.
    Torres I; Fernández S; Fernández-Vallejo M; Arnedo I; Gandía JJ
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34500923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-trapping design of graphene transparent electrodes for efficient thin-film silicon solar cells.
    Zhao Y; Chen F; Shen Q; Zhang L
    Appl Opt; 2012 Sep; 51(25):6245-51. PubMed ID: 22945173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Power Conversion Efficiency of Graphene/Silicon Heterojunction Solar Cells Through NiO Induced Doping.
    Kuru C; Yavuz S; Kargar A; Choi D; Choi C; Rustomji C; Jin S; Bandaru PR
    J Nanosci Nanotechnol; 2016 Jan; 16(1):1190-3. PubMed ID: 27398585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel Polymer-Based Organic/c-Si Monolithic Tandem Solar Cell: Enhanced Efficiency using Interlayer and Transparent Top Electrode Engineering.
    Park H; Park SH; Lee SW; Kang Y; Kim D; Son HJ; Lee HS
    Macromol Rapid Commun; 2021 Sep; 42(17):e2100305. PubMed ID: 34347333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bulk heterojunction formation between indium tin oxide nanorods and CuInS2 nanoparticles for inorganic thin film solar cell applications.
    Cho JW; Park SJ; Kim J; Kim W; Park HK; Do YR; Min BK
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):849-53. PubMed ID: 22235945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of WO
    Lee D; Chae M; Ahmad I; Kim JR; Kim HD
    Nanomaterials (Basel); 2023 May; 13(9):. PubMed ID: 37177095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Device Modelling and Optimization of Nanomaterial-Based Planar Heterojunction Solar Cell (by Varying the Device Dimensions and Material Parameters).
    Moorthy VM; Srivastava VM
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36080068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective Passivation and Tunneling Hybrid a-SiO
    Gao M; Wan Y; Li Y; Han B; Song W; Xu F; Zhao L; Ma Z
    ACS Appl Mater Interfaces; 2017 May; 9(20):17565-17575. PubMed ID: 28463491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical analysis of c-Si/CGSe monolithic tandem solar cells by using a cell-selective light absorption scheme.
    Jeong AR; Choi SB; Kim WM; Park JK; Choi J; Kim I; Jeong JH
    Sci Rep; 2017 Nov; 7(1):15723. PubMed ID: 29146956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved PEDOT:PSS/c-Si hybrid solar cell using inverted structure and effective passivation.
    Zhang X; Yang D; Yang Z; Guo X; Liu B; Ren X; Liu SF
    Sci Rep; 2016 Oct; 6():35091. PubMed ID: 27725714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of metal nanowire networks on hydrogenated amorphous silicon thin film solar cells.
    Xie S; Hou G; Chen P; Jia B; Gu M
    Nanotechnology; 2017 Feb; 28(8):085402. PubMed ID: 27966477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrathin Ta
    Narangari PR; Karuturi SK; Wu Y; Wong-Leung J; Vora K; Lysevych M; Wan Y; Tan HH; Jagadish C; Mokkapati S
    Nanoscale; 2019 Apr; 11(15):7497-7505. PubMed ID: 30942202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.