BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 27092492)

  • 41. [Selective Laser Sintering-produced porous titanium alloy scaffold for bone tissue engineering].
    Ding R; Wu Z; Qiu G; Wu G; Wang H; Su X; Yin B; Ma S; Qi B
    Zhonghua Yi Xue Za Zhi; 2014 May; 94(19):1499-502. PubMed ID: 25143173
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improving osteointegration and osteogenesis of three-dimensional porous Ti6Al4V scaffolds by polydopamine-assisted biomimetic hydroxyapatite coating.
    Li Y; Yang W; Li X; Zhang X; Wang C; Meng X; Pei Y; Fan X; Lan P; Wang C; Li X; Guo Z
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5715-24. PubMed ID: 25711714
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Self-assembling peptide and nHA/CTS composite scaffolds promote bone regeneration through increasing seed cell adhesion.
    Zhang Z; Wu G; Cao Y; Liu C; Jin Y; Wang Y; Yang L; Guo J; Zhu L
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():445-454. PubMed ID: 30274077
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Histological and biomechanical study of repairing rabbit radius segmental bone defect with porous titanium].
    Zhang HF; Zhao CY; Fan HS; Zhang H; Pei FX; Wang GL
    Beijing Da Xue Xue Bao Yi Xue Ban; 2011 Oct; 43(5):724-9. PubMed ID: 22008684
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Vertical Guided Bone Regeneration in the Rabbit Calvarium Using Porous Nanohydroxyapatite Block Grafts Coated with rhVEGF
    Liu W; Du B; Tan S; Wang Q; Li Y; Zhou L
    Int J Nanomedicine; 2020; 15():10059-10073. PubMed ID: 33335394
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modulation of bone formation and resorption using a novel zoledronic acid loaded gelatin nanoparticles integrated porous titanium scaffold: an in vitro and in vivo study.
    Yang XJ; Wang FQ; Lu CB; Zou JW; Hu JB; Yang Z; Sang HX; Zhang Y
    Biomed Mater; 2020 Jul; 15(5):055013. PubMed ID: 32252046
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The characteristics of mussel-inspired nHA/OSA injectable hydrogel and repaired bone defect in rabbit.
    Liu C; Wu J; Gan D; Li Z; Shen J; Tang P; Luo S; Li P; Lu X; Zheng W
    J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):1814-1825. PubMed ID: 31774242
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In vivo study of chitosan-natural nano hydroxyapatite scaffolds for bone tissue regeneration.
    Lee JS; Baek SD; Venkatesan J; Bhatnagar I; Chang HK; Kim HT; Kim SK
    Int J Biol Macromol; 2014 Jun; 67():360-6. PubMed ID: 24705167
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparative investigation of porous nano-hydroxyapaptite/chitosan, nano-zirconia/chitosan and novel nano-calcium zirconate/chitosan composite scaffolds for their potential applications in bone regeneration.
    Gaihre B; Jayasuriya AC
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():330-339. PubMed ID: 30033262
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fabrication of gelatin methacrylate/nanohydroxyapatite microgel arrays for periodontal tissue regeneration.
    Chen X; Bai S; Li B; Liu H; Wu G; Liu S; Zhao Y
    Int J Nanomedicine; 2016; 11():4707-4718. PubMed ID: 27695327
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhanced bone defect repairing effects in glucocorticoid-induced osteonecrosis of the femoral head using a porous nano-lithium-hydroxyapatite/gelatin microsphere/erythropoietin composite scaffold.
    Li D; Xie X; Yang Z; Wang C; Wei Z; Kang P
    Biomater Sci; 2018 Feb; 6(3):519-537. PubMed ID: 29369309
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lysophosphatidic Acid/Polydopamine-Modified nHA Composite Scaffolds for Enhanced Osteogenesis via Upregulating the Wnt/Beta-Catenin Pathway.
    Chen J; Qian Y; Li H; Zuo W; Sun W; Xing D; Zhou X
    ACS Appl Mater Interfaces; 2024 Mar; 16(11):13466-13480. PubMed ID: 38445450
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds.
    Huang YX; Ren J; Chen C; Ren TB; Zhou XY
    J Biomater Appl; 2008 Mar; 22(5):409-32. PubMed ID: 17494961
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A hybrid composite system of biphasic calcium phosphate granules loaded with hyaluronic acid-gelatin hydrogel for bone regeneration.
    Faruq O; Kim B; Padalhin AR; Lee GH; Lee BT
    J Biomater Appl; 2017 Oct; 32(4):433-445. PubMed ID: 28944711
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fabrication of human hair keratin/jellyfish collagen/eggshell-derived hydroxyapatite osteoinductive biocomposite scaffolds for bone tissue engineering: From waste to regenerative medicine products.
    Arslan YE; Sezgin Arslan T; Derkus B; Emregul E; Emregul KC
    Colloids Surf B Biointerfaces; 2017 Jun; 154():160-170. PubMed ID: 28334693
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Biomimetic Material with a High Bio-responsibility for Bone Reconstruction and Tissue Engineering.
    Chen X; Meng Y; Wang Y; Du C; Yang C
    J Biomater Sci Polym Ed; 2011; 22(1-3):153-63. PubMed ID: 20546681
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model.
    Xue D; Zheng Q; Zong C; Li Q; Li H; Qian S; Zhang B; Yu L; Pan Z
    J Biomed Mater Res A; 2010 Jul; 94(1):259-70. PubMed ID: 20166224
    [TBL] [Abstract][Full Text] [Related]  

  • 58. On-Demand Guided Bone Regeneration with Microbial Protection of Ornamented SPU Scaffold with Bismuth-Doped Single Crystalline Hydroxyapatite: Augmentation and Cartilage Formation.
    Selvakumar M; Srivastava P; Pawar HS; Francis NK; Das B; Sathishkumar G; Subramanian B; Jaganathan SK; George G; Anandhan S; Dhara S; Nando GB; Chattopadhyay S
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):4086-100. PubMed ID: 26799576
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of nano-structured bioceramic surface on osteogenic differentiation of adipose derived stem cells.
    Xia L; Lin K; Jiang X; Fang B; Xu Y; Liu J; Zeng D; Zhang M; Zhang X; Chang J; Zhang Z
    Biomaterials; 2014 Oct; 35(30):8514-27. PubMed ID: 25002263
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enzymatically gellable gelatin improves nano-hydroxyapatite-alginate microcapsule characteristics for modular bone tissue formation.
    Firouzi N; Baradar Khoshfetrat A; Kazemi D
    J Biomed Mater Res A; 2020 Feb; 108(2):340-350. PubMed ID: 31618526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.