These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 27092492)

  • 81. Preparation of chitosan/silk fibroin/hydroxyapatite porous scaffold and its characteristics in comparison to bi-component scaffolds.
    Qi XN; Mou ZL; Zhang J; Zhang ZQ
    J Biomed Mater Res A; 2014 Feb; 102(2):366-72. PubMed ID: 23533149
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation.
    Paşcu EI; Cahill PA; Stokes J; McGuinness GB
    J Biomater Appl; 2016 Apr; 30(9):1334-49. PubMed ID: 26767394
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Enhanced bone regeneration of cortical segmental bone defects using porous titanium scaffolds incorporated with colloidal gelatin gels for time- and dose-controlled delivery of dual growth factors.
    van der Stok J; Wang H; Amin Yavari S; Siebelt M; Sandker M; Waarsing JH; Verhaar JA; Jahr H; Zadpoor AA; Leeuwenburgh SC; Weinans H
    Tissue Eng Part A; 2013 Dec; 19(23-24):2605-14. PubMed ID: 23822814
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Nano-hydroxyapatite-alginate-gelatin microcapsule as a potential osteogenic building block for modular bone tissue engineering.
    Nabavinia M; Khoshfetrat AB; Naderi-Meshkin H
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():67-77. PubMed ID: 30678955
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti6Al4V scaffolds incorporating growth factor-doped fibrin glue.
    Lv J; Xiu P; Tan J; Jia Z; Cai H; Liu Z
    Biomed Mater; 2015 Jun; 10(3):035013. PubMed ID: 26107105
    [TBL] [Abstract][Full Text] [Related]  

  • 86. [Fabrication of porous poly lactic acid-bone matrix gelatin composite bioactive material and its osteoinductive activity].
    Zhang Y; Li B; Li J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):135-9. PubMed ID: 17357459
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Graphene oxide nanoflakes incorporated gelatin-hydroxyapatite scaffolds enhance osteogenic differentiation of human mesenchymal stem cells.
    Nair M; Nancy D; Krishnan AG; Anjusree GS; Vadukumpully S; Nair SV
    Nanotechnology; 2015 Apr; 26(16):161001. PubMed ID: 25824014
    [TBL] [Abstract][Full Text] [Related]  

  • 88. 3D chitosan-gelatin-chondroitin porous scaffold improves osteogenic differentiation of mesenchymal stem cells.
    Machado CB; Ventura JM; Lemos AF; Ferreira JM; Leite MF; Goes AM
    Biomed Mater; 2007 Jun; 2(2):124-31. PubMed ID: 18458445
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Bone formation of a porous Gelatin-Pectin-biphasic calcium phosphate composite in presence of BMP-2 and VEGF.
    Amirian J; Linh NT; Min YK; Lee BT
    Int J Biol Macromol; 2015 May; 76():10-24. PubMed ID: 25709009
    [TBL] [Abstract][Full Text] [Related]  

  • 90. The osteogenic differentiation of human dental pulp stem cells in alginate-gelatin/Nano-hydroxyapatite microcapsules.
    Alipour M; Firouzi N; Aghazadeh Z; Samiei M; Montazersaheb S; Khoshfetrat AB; Aghazadeh M
    BMC Biotechnol; 2021 Jan; 21(1):6. PubMed ID: 33430842
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Membrane-reinforced three-dimensional electrospun silk fibroin scaffolds for bone tissue engineering.
    Yang SY; Hwang TH; Che L; Oh JS; Ha Y; Ryu W
    Biomed Mater; 2015 Jun; 10(3):035011. PubMed ID: 26106926
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Novel titanium-apatite hybrid scaffolds with spongy bone-like micro architecture intended for spinal application: In vitro and in vivo study.
    Vlad MD; Fernández Aguado E; Gómez González S; Ivanov IC; Şindilar EV; Poeată I; Iencean AŞ; Butnaru M; Avădănei ER; López López J
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110658. PubMed ID: 32204086
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Acceleration of segmental bone regeneration in a rabbit model by strontium-doped calcium polyphosphate scaffold through stimulating VEGF and bFGF secretion from osteoblasts.
    Gu Z; Zhang X; Li L; Wang Q; Yu X; Feng T
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):274-81. PubMed ID: 25428072
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Perfusion conditioning of hydroxyapatite-chitosan-gelatin scaffolds for bone tissue regeneration from human mesenchymal stem cells.
    Sellgren KL; Ma T
    J Tissue Eng Regen Med; 2012 Jan; 6(1):49-59. PubMed ID: 21308991
    [TBL] [Abstract][Full Text] [Related]  

  • 95. RhBMP-2-loaded calcium silicate/calcium phosphate cement scaffold with hierarchically porous structure for enhanced bone tissue regeneration.
    Zhang J; Zhou H; Yang K; Yuan Y; Liu C
    Biomaterials; 2013 Dec; 34(37):9381-92. PubMed ID: 24044997
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Fabrication of novel Si-doped hydroxyapatite/gelatine scaffolds by rapid prototyping for drug delivery and bone regeneration.
    Martínez-Vázquez FJ; Cabañas MV; Paris JL; Lozano D; Vallet-Regí M
    Acta Biomater; 2015 Mar; 15():200-9. PubMed ID: 25560614
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Poly-ε-caprolactone composite scaffolds for bone repair.
    Di Liddo R; Paganin P; Lora S; Dalzoppo D; Giraudo C; Miotto D; Tasso A; Barbon S; Artico M; Bianchi E; Parnigotto PP; Conconi MT; Grandi C
    Int J Mol Med; 2014 Dec; 34(6):1537-46. PubMed ID: 25319350
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Improved in vitro biocompatibility of surface-modified hydroxyapatite sponge scaffold with gelatin and BMP-2 in comparison against a commercial bone allograft.
    Carpena NT; Min YK; Lee BT
    ASAIO J; 2015; 61(1):78-86. PubMed ID: 25248041
    [TBL] [Abstract][Full Text] [Related]  

  • 99. nHA-loaded gelatin/alginate hydrogel with combined physical and bioactive features for maxillofacial bone repair.
    Zhou X; Sun J; Wo K; Wei H; Lei H; Zhang J; Lu X; Mei F; Tang Q; Wang Y; Luo Z; Fan L; Chu Y; Chen L
    Carbohydr Polym; 2022 Dec; 298():120127. PubMed ID: 36241299
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes.
    Ran Q; Yang W; Hu Y; Shen X; Yu Y; Xiang Y; Cai K
    J Mech Behav Biomed Mater; 2018 Aug; 84():1-11. PubMed ID: 29709846
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.