These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 27092586)

  • 1. Computational study of glucosepane-water and hydrogen bond formation: an electron topology and orbital analysis.
    Nash A; Saßmannshausen J; Bozec L; Birch HL; de Leeuw NH
    J Biomol Struct Dyn; 2017 Apr; 35(5):1127-1137. PubMed ID: 27092586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preferential sites for intramolecular glucosepane cross-link formation in type I collagen: A thermodynamic study.
    Collier TA; Nash A; Birch HL; de Leeuw NH
    Matrix Biol; 2015 Oct; 48():78-88. PubMed ID: 26049074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics, formation, and pathophysiology of glucosepane: a major protein cross-link.
    Sjöberg JS; Bulterijs S
    Rejuvenation Res; 2009 Apr; 12(2):137-48. PubMed ID: 19415980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lysine-arginine advanced glycation end-product cross-links and the effect on collagen structure: A molecular dynamics study.
    Nash A; Noh SY; Birch HL; de Leeuw NH
    Proteins; 2021 May; 89(5):521-530. PubMed ID: 33320391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucosepane is associated with changes to structural and physical properties of collagen fibrils.
    Nash A; Notou M; Lopez-Clavijo AF; Bozec L; de Leeuw NH; Birch HL
    Matrix Biol Plus; 2019 Nov; 4():100013. PubMed ID: 33543010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age- and diabetes-related nonenzymatic crosslinks in collagen fibrils: candidate amino acids involved in Advanced Glycation End-products.
    Gautieri A; Redaelli A; Buehler MJ; Vesentini S
    Matrix Biol; 2014 Feb; 34():89-95. PubMed ID: 24060753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect on the mechanical properties of type I collagen of intra-molecular lysine-arginine derived advanced glycation end-product cross-linking.
    Collier TA; Nash A; Birch HL; de Leeuw NH
    J Biomech; 2018 Jan; 67():55-61. PubMed ID: 29254633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen bonding mediated by key orbital interactions determines hydration enthalpy differences of phosphate water clusters.
    Ruben EA; Chapman MS; Evanseck JD
    J Phys Chem A; 2007 Oct; 111(42):10804-14. PubMed ID: 17915844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strength and nature of hydrogen bonding interactions in mono- and di-hydrated formamide complexes.
    Angelina EL; Peruchena NM
    J Phys Chem A; 2011 May; 115(18):4701-10. PubMed ID: 21506592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The hydration of glucose: the local configurations in sugar-water hydrogen bonds.
    Suzuki T
    Phys Chem Chem Phys; 2008 Jan; 10(1):96-105. PubMed ID: 18075687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-way effects between hydrogen bond and intramolecular resonance effect: an ab initio study on complexes of formamide and its derivatives with water.
    Liu T; Li H; Huang MB; Duan Y; Wang ZX
    J Phys Chem A; 2008 Jun; 112(24):5436-47. PubMed ID: 18503289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic structure, molecular electrostatic potential and hydrogen bonding in DMSO-X complexes (X = ethanol, methanol and water).
    Dhumal NR
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Aug; 79(3):654-60. PubMed ID: 21524933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intra-molecular lysine-arginine derived advanced glycation end-product cross-linking in Type I collagen: A molecular dynamics simulation study.
    Collier TA; Nash A; Birch HL; de Leeuw NH
    Biophys Chem; 2016 Nov; 218():42-46. PubMed ID: 27648753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen bonds in membrane proteins.
    Sheu SY; Schlag EW; Selzle HL; Yang DY
    J Phys Chem B; 2009 Apr; 113(15):5318-26. PubMed ID: 19354309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microsolvation and hydrogen bond interactions in Glycine Dipeptide: molecular dynamics and density functional theory studies.
    Yogeswari B; Kanakaraju R; Boopathi S; Kolandaivel P
    J Mol Graph Model; 2012 May; 35():11-20. PubMed ID: 22481074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen bonding in substituted formic acid dimers.
    Senthilkumar L; Ghanty TK; Ghosh SK; Kolandaivel P
    J Phys Chem A; 2006 Nov; 110(46):12623-8. PubMed ID: 17107113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen bonding and reactivity of water to azines in their S1 (n,π*) electronic excited states in the gas phase and in solution.
    Reimers JR; Cai ZL
    Phys Chem Chem Phys; 2012 Jul; 14(25):8791-802. PubMed ID: 22532059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Some measures for making halogen bonds stronger than hydrogen bonds in H2CS-HOX (X = F, Cl, and Br) complexes.
    Li QZ; Jing B; Li R; Liu ZB; Li WZ; Luan F; Cheng JB; Gong BA; Sun JZ
    Phys Chem Chem Phys; 2011 Feb; 13(6):2266-71. PubMed ID: 21125096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The significant role of the intermolecular CH⋯O/N hydrogen bonds in governing the biologically important pairs of the DNA and RNA modified bases: a comprehensive theoretical investigation.
    Brovarets' OO; Yurenko YP; Hovorun DM
    J Biomol Struct Dyn; 2015; 33(8):1624-52. PubMed ID: 25350312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of microsolvation on the adenine-uracil base pair and its radical anion: adenine-uracil mono- and dihydrates.
    Kim S; Schaefer HF
    J Phys Chem A; 2007 Oct; 111(41):10381-9. PubMed ID: 17705454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.