BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 27092947)

  • 1. Rapid Prediction of Bacterial Heterotrophic Fluxomics Using Machine Learning and Constraint Programming.
    Wu SG; Wang Y; Jiang W; Oyetunde T; Yao R; Zhang X; Shimizu K; Tang YJ; Bao FS
    PLoS Comput Biol; 2016 Apr; 12(4):e1004838. PubMed ID: 27092947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. WUFlux: an open-source platform for
    He L; Wu SG; Zhang M; Chen Y; Tang YJ
    BMC Bioinformatics; 2016 Nov; 17(1):444. PubMed ID: 27814681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Framework for Machine-Learning-Enabled
    Wu C; Yu J; Guarnieri M; Xiong W
    ACS Synth Biol; 2022 Jan; 11(1):103-115. PubMed ID: 34705423
    [No Abstract]   [Full Text] [Related]  

  • 4. A Method to Constrain Genome-Scale Models with 13C Labeling Data.
    Martín HG; Kumar VS; Weaver D; Ghosh A; Chubukov V; Mukhopadhyay A; Arkin A; Keasling JD
    PLoS Comput Biol; 2015 Sep; 11(9):e1004363. PubMed ID: 26379153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. p13CMFA: Parsimonious 13C metabolic flux analysis.
    Foguet C; Jayaraman A; Marin S; Selivanov VA; Moreno P; Messeguer R; de Atauri P; Cascante M
    PLoS Comput Biol; 2019 Sep; 15(9):e1007310. PubMed ID: 31490922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-Scale
    Ando D; García Martín H
    Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Hollinshead W; He L; Tang YJ
    Methods Mol Biol; 2019; 1927():215-230. PubMed ID: 30788795
    [No Abstract]   [Full Text] [Related]  

  • 8. From Escherichia coli mutant 13C labeling data to a core kinetic model: A kinetic model parameterization pipeline.
    Foster CJ; Gopalakrishnan S; Antoniewicz MR; Maranas CD
    PLoS Comput Biol; 2019 Sep; 15(9):e1007319. PubMed ID: 31504032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SUMOFLUX: A Generalized Method for Targeted 13C Metabolic Flux Ratio Analysis.
    Kogadeeva M; Zamboni N
    PLoS Comput Biol; 2016 Sep; 12(9):e1005109. PubMed ID: 27626798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ScalaFlux: A scalable approach to quantify fluxes in metabolic subnetworks.
    Millard P; Schmitt U; Kiefer P; Vorholt JA; Heux S; Portais JC
    PLoS Comput Biol; 2020 Apr; 16(4):e1007799. PubMed ID: 32287281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physicochemical and metabolic constraints for thermodynamics-based stoichiometric modelling under mesophilic growth conditions.
    Tomi-Andrino C; Norman R; Millat T; Soucaille P; Winzer K; Barrett DA; King J; Kim DH
    PLoS Comput Biol; 2021 Jan; 17(1):e1007694. PubMed ID: 33493151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BayFlux: A Bayesian method to quantify metabolic Fluxes and their uncertainty at the genome scale.
    Backman TWH; Schenk C; Radivojevic T; Ando D; Singh J; Czajka JJ; Costello Z; Keasling JD; Tang Y; Akhmatskaya E; Garcia Martin H
    PLoS Comput Biol; 2023 Nov; 19(11):e1011111. PubMed ID: 37948450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steady-state ¹³C fluxomics using OpenFLUX.
    Quek LE; Nielsen LK
    Methods Mol Biol; 2014; 1191():209-24. PubMed ID: 25178793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using metabolic networks to predict cross-feeding and competition interactions between microorganisms.
    Silva-Andrade C; Rodriguez-Fernández M; Garrido D; Martin AJM
    Microbiol Spectr; 2024 May; 12(5):e0228723. PubMed ID: 38506512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model validation and selection in metabolic flux analysis and flux balance analysis.
    Kaste JAM; Shachar-Hill Y
    Biotechnol Prog; 2024; 40(1):e3413. PubMed ID: 37997613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated computational approach for metabolic flux analysis coupled with inference of tandem-MS collisional fragments.
    Tepper N; Shlomi T
    Bioinformatics; 2013 Dec; 29(23):3045-52. PubMed ID: 24123514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of transcriptomic constraint-based methods for central carbon flux inference.
    Bhadra-Lobo S; Kim MK; Lun DS
    PLoS One; 2020; 15(9):e0238689. PubMed ID: 32903284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 13C metabolic flux analysis: optimal design of isotopic labeling experiments.
    Antoniewicz MR
    Curr Opin Biotechnol; 2013 Dec; 24(6):1116-21. PubMed ID: 23453397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods and advances in metabolic flux analysis: a mini-review.
    Antoniewicz MR
    J Ind Microbiol Biotechnol; 2015 Mar; 42(3):317-25. PubMed ID: 25613286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. E-Flux2 and SPOT: Validated Methods for Inferring Intracellular Metabolic Flux Distributions from Transcriptomic Data.
    Kim MK; Lane A; Kelley JJ; Lun DS
    PLoS One; 2016; 11(6):e0157101. PubMed ID: 27327084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.