These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 27093133)

  • 61. Modulation of amylose content by structure-based modification of OsGBSS1 activity in rice (Oryza sativa L.).
    Liu D; Wang W; Cai X
    Plant Biotechnol J; 2014 Dec; 12(9):1297-307. PubMed ID: 25052102
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Characterization of shrunken endosperm mutants in barley.
    Ma J; Jiang QT; Wei L; Wang JR; Chen GY; Liu YX; Li W; Wei YM; Liu C; Zheng YL
    Gene; 2014 Apr; 539(1):15-20. PubMed ID: 24508469
    [TBL] [Abstract][Full Text] [Related]  

  • 63. RNA interference-mediated silencing of the starch branching enzyme gene improves amylose content in rice.
    Jiang HY; Zhang J; Wang JM; Xia M; Zhu SW; Cheng BJ
    Genet Mol Res; 2013 Jan; 12(3):2800-8. PubMed ID: 23315878
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Grain qualities and their genetic derivation of 7 new rice for Africa (NERICA) varieties.
    Kishine M; Suzuki K; Nakamura S; Ohtsubo K
    J Agric Food Chem; 2008 Jun; 56(12):4605-10. PubMed ID: 18512938
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Integrating a genome-wide association study with a large-scale transcriptome analysis to predict genetic regions influencing the glycaemic index and texture in rice.
    Anacleto R; Badoni S; Parween S; Butardo VM; Misra G; Cuevas RP; Kuhlmann M; Trinidad TP; Mallillin AC; Acuin C; Bird AR; Morell MK; Sreenivasulu N
    Plant Biotechnol J; 2019 Jul; 17(7):1261-1275. PubMed ID: 30549178
    [TBL] [Abstract][Full Text] [Related]  

  • 66. High-amylose rice improves indices of animal health in normal and diabetic rats.
    Zhu L; Gu M; Meng X; Cheung SC; Yu H; Huang J; Sun Y; Shi Y; Liu Q
    Plant Biotechnol J; 2012 Apr; 10(3):353-62. PubMed ID: 22145600
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Genome-wide analysis of Dongxiang wild rice (Oryza rufipogon Griff.) to investigate lost/acquired genes during rice domestication.
    Zhang F; Xu T; Mao L; Yan S; Chen X; Wu Z; Chen R; Luo X; Xie J; Gao S
    BMC Plant Biol; 2016 Apr; 16():103. PubMed ID: 27118394
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A BAC physical map of aus rice cultivar 'Kasalath', and the map-based genomic sequence of 'Kasalath' chromosome 1.
    Kanamori H; Fujisawa M; Katagiri S; Oono Y; Fujisawa H; Karasawa W; Kurita K; Sasaki H; Mori S; Hamada M; Mukai Y; Yazawa T; Mizuno H; Namiki N; Sasaki T; Katayose Y; Matsumoto T; Wu J
    Plant J; 2013 Nov; 76(4):699-708. PubMed ID: 23980637
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [Single nucleotide polymorphism (SNP) and its application in rice].
    Liu CG; Zhang GQ
    Yi Chuan; 2006 Jun; 28(6):737-44. PubMed ID: 16818440
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Characterization of the spatial and temporal expression of the OsSSII-3 gene encoding a key soluble starch synthase in rice.
    Li QF; Sun SS; Liu QQ
    J Sci Food Agric; 2013 Oct; 93(13):3184-90. PubMed ID: 23681703
    [TBL] [Abstract][Full Text] [Related]  

  • 71. An assessment of Wx microsatellite allele, alkali degradation and differentiation of chloroplast DNA in traditional black rice (Oryza sativa L.) from Thailand and Lao PDR.
    Prathepha P
    Pak J Biol Sci; 2007 Jan; 10(2):261-6. PubMed ID: 19070026
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The number of genes having different alleles between rice cultivars estimated by SNP analysis.
    Shirasawa K; Maeda H; Monna L; Kishitani S; Nishio T
    Theor Appl Genet; 2007 Nov; 115(8):1067-74. PubMed ID: 17823787
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Genome-wide DNA polymorphism and transcriptome analysis of an early-maturing rice mutant.
    Hwang SG; Hwang JG; Kim DS; Jang CS
    Genetica; 2014 Feb; 142(1):73-85. PubMed ID: 24415207
    [TBL] [Abstract][Full Text] [Related]  

  • 74. SNP-based analysis of genetic diversity in anther-derived rice by whole genome sequencing.
    Jeong IS; Yoon UH; Lee GS; Ji HS; Lee HJ; Han CD; Hahn JH; An G; Kim TH
    Rice (N Y); 2013 Mar; 6(1):6. PubMed ID: 24280451
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Chromosome-Level Genome Assembly of a Fragrant
    Lu R; Liu J; Wang X; Song Z; Ji X; Li N; Ma G; Sun X
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077110
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Pedigree-based genome re-sequencing reveals genetic variation patterns of elite backbone varieties during modern rice improvement.
    Zheng X; Li L; Liang F; Tan C; Tang S; Yu S; Diao Y; Li S; Hu Z
    Sci Rep; 2017 Mar; 7(1):292. PubMed ID: 28331200
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Whole Genome Resequencing of 20 Accessions of Rice Landraces Reveals Javanica Genomic Structure Variation and Allelic Genotypes of a Grain Weight Gene TGW2.
    Long W; Luo L; Luo L; Xu W; Li Y; Cai Y; Xie H
    Front Plant Sci; 2022; 13():857435. PubMed ID: 35548287
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Data on genome resequencing of pigmented and non-pigmented Malaysian rice varieties.
    Zainal-Abidin RA; Zainal Z; Mohamed-Hussein ZA; Sew YS; Simoh S; Ab Razak S; Abu-Bakar N
    Data Brief; 2020 Aug; 31():105806. PubMed ID: 32566707
    [TBL] [Abstract][Full Text] [Related]  

  • 79. DEVELOPMENT OF PCR-BASED SNP MARKER OF RICE Waxy GENE WITH CONFRONTING TWO-PAIR PRIMERS.
    Cai H; Xu D; Zhou L; Cheng J; Zhang Z; Wu J; You A
    Genetika; 2015 Jul; 51(7):787-91. PubMed ID: 26410932
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Identification of SNPs in closely related Temperate Japonica rice cultivars using restriction enzyme-phased sequencing.
    Kim SI; Tai TH
    PLoS One; 2013; 8(3):e60176. PubMed ID: 23555916
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.