BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 27093313)

  • 21. A novel method and software for automatically classifying Alzheimer's disease patients by magnetic resonance imaging analysis.
    Previtali F; Bertolazzi P; Felici G; Weitschek E
    Comput Methods Programs Biomed; 2017 May; 143():89-95. PubMed ID: 28391822
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dependency criterion based brain pathological age estimation of Alzheimer's disease patients with MR scans.
    Li Y; Liu Y; Wang P; Wang J; Xu S; Qiu M;
    Biomed Eng Online; 2017 Apr; 16(1):50. PubMed ID: 28438167
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Performance of Hippocampus Volumetry with FSL-FIRST for Prediction of Alzheimer's Disease Dementia in at Risk Subjects with Amnestic Mild Cognitive Impairment.
    Suppa P; Hampel H; Kepp T; Lange C; Spies L; Fiebach JB; Dubois B; Buchert R;
    J Alzheimers Dis; 2016; 51(3):867-73. PubMed ID: 26923010
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Independent Component Analysis-Support Vector Machine-Based Computer-Aided Diagnosis System for Alzheimer's with Visual Support.
    Khedher L; Illán IA; Górriz JM; Ramírez J; Brahim A; Meyer-Baese A
    Int J Neural Syst; 2017 May; 27(3):1650050. PubMed ID: 27776438
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of imaging modalities, brain atlases and feature selection on prediction of Alzheimer's disease.
    Ota K; Oishi N; Ito K; Fukuyama H; ;
    J Neurosci Methods; 2015 Dec; 256():168-83. PubMed ID: 26318777
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Discerning mild cognitive impairment and Alzheimer Disease from normal aging: morphologic characterization based on univariate and multivariate models.
    Liao W; Long X; Jiang C; Diao Y; Liu X; Zheng H; Zhang L;
    Acad Radiol; 2014 May; 21(5):597-604. PubMed ID: 24433704
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Instance-Based Representation Using Multiple Kernel Learning for Predicting Conversion to Alzheimer Disease.
    Collazos-Huertas D; Cárdenas-Peña D; Castellanos-Dominguez G
    Int J Neural Syst; 2019 Mar; 29(2):1850042. PubMed ID: 30415632
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting Prodromal Alzheimer's Disease in Subjects with Mild Cognitive Impairment Using Machine Learning Classification of Multimodal Multicenter Diffusion-Tensor and Magnetic Resonance Imaging Data.
    Dyrba M; Barkhof F; Fellgiebel A; Filippi M; Hausner L; Hauenstein K; Kirste T; Teipel SJ;
    J Neuroimaging; 2015; 25(5):738-47. PubMed ID: 25644739
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multi-stage Biomarker Models for Progression Estimation in Alzheimer's Disease.
    Schmidt-Richberg A; Guerrero R; Ledig C; Molina-Abril H; Frangi AF; Rueckert D;
    Inf Process Med Imaging; 2015; 24():387-98. PubMed ID: 26221689
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multimodal image data fusion for Alzheimer's Disease diagnosis by sparse representation.
    Ortiz A; Fajardo D; Górriz JM; Ramírez J; Martínez-Murcia FJ
    Stud Health Technol Inform; 2014; 207():11-8. PubMed ID: 25488206
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer's disease.
    Schmitter D; Roche A; Maréchal B; Ribes D; Abdulkadir A; Bach-Cuadra M; Daducci A; Granziera C; Klöppel S; Maeder P; Meuli R; Krueger G;
    Neuroimage Clin; 2015; 7():7-17. PubMed ID: 25429357
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multi-task exclusive relationship learning for alzheimer's disease progression prediction with longitudinal data.
    Wang M; Zhang D; Shen D; Liu M
    Med Image Anal; 2019 Apr; 53():111-122. PubMed ID: 30763830
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep sparse multi-task learning for feature selection in Alzheimer's disease diagnosis.
    Suk HI; Lee SW; Shen D;
    Brain Struct Funct; 2016 Jun; 221(5):2569-87. PubMed ID: 25993900
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers.
    Zhang D; Shen D;
    PLoS One; 2012; 7(3):e33182. PubMed ID: 22457741
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A biophysical model of brain deformation to simulate and analyze longitudinal MRIs of patients with Alzheimer's disease.
    Khanal B; Lorenzi M; Ayache N; Pennec X
    Neuroimage; 2016 Jul; 134():35-52. PubMed ID: 27039699
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simultaneous Longitudinal Registration with Group-Wise Similarity Prior.
    Fleishman GM; Gutman BA; Fletcher PT; Thompson PM
    Inf Process Med Imaging; 2015; 24():746-57. PubMed ID: 26213451
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Novel Deep Learning Framework on Brain Functional Networks for Early MCI Diagnosis.
    Kam TE; Zhang H; Shen D
    Med Image Comput Comput Assist Interv; 2018 Sep; 11072():293-301. PubMed ID: 31106304
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fused Group Lasso Regularized Multi-Task Feature Learning and Its Application to the Cognitive Performance Prediction of Alzheimer's Disease.
    Liu X; Cao P; Wang J; Kong J; Zhao D
    Neuroinformatics; 2019 Apr; 17(2):271-294. PubMed ID: 30284672
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sparse SPM: Group Sparse-dictionary learning in SPM framework for resting-state functional connectivity MRI analysis.
    Lee YB; Lee J; Tak S; Lee K; Na DL; Seo SW; Jeong Y; Ye JC;
    Neuroimage; 2016 Jan; 125():1032-1045. PubMed ID: 26524138
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temporal Correlation Structure Learning for MCI Conversion Prediction.
    Wang X; Cai W; Shen D; Huang H
    Med Image Comput Comput Assist Interv; 2018 Sep; 11072():446-454. PubMed ID: 31106305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.