These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 2709332)
21. Effects of unilateral labyrinthectomy on the norepinephrine content in forebrain and cerebellar structures of albino rats. D'Ascanio P; Arrighi P; Fascetti F; Pompeiano O Arch Ital Biol; 2000 Jul; 138(3):241-70. PubMed ID: 10951897 [TBL] [Abstract][Full Text] [Related]
22. Inhibition of [3H]norepinephrine uptake in organ cultured rat superior cervical ganglia by xylamine. Fischer JB; Cho AK J Pharmacol Exp Ther; 1982 Jan; 220(1):115-9. PubMed ID: 7053407 [TBL] [Abstract][Full Text] [Related]
23. Chlordecone interaction with catecholamine binding and uptake in rat brain synaptosomes. Desaiah D Neurotoxicology; 1985; 6(1):159-65. PubMed ID: 2581192 [TBL] [Abstract][Full Text] [Related]
24. Effects of cannabinoids on catecholamine uptake and release in hypothalamic and striatal synaptosomes. Poddar MK; Dewey WL J Pharmacol Exp Ther; 1980 Jul; 214(1):63-7. PubMed ID: 7391971 [TBL] [Abstract][Full Text] [Related]
25. Distributions of tyrosine hydroxylase-, dopamine-beta-hydroxylase-, and phenylethanolamine-N-methyltransferase-immunoreactive neurons in the brain of the hamster (Mesocricetus auratus). Vincent SR J Comp Neurol; 1988 Feb; 268(4):584-99. PubMed ID: 2895779 [TBL] [Abstract][Full Text] [Related]
26. Anticonvulsant effect of enhancement of noradrenergic transmission in the superior colliculus in genetically epilepsy-prone rats (GEPRs): a microinjection study. Yan QS; Dailey JW; Steenbergen JL; Jobe PC Brain Res; 1998 Jan; 780(2):199-209. PubMed ID: 9507130 [TBL] [Abstract][Full Text] [Related]
27. Release-regulating GABAA receptors are present on noradrenergic nerve terminals in selective areas of the rat brain. Bonanno G; Raiteri M Synapse; 1987; 1(3):254-7. PubMed ID: 2850623 [TBL] [Abstract][Full Text] [Related]
28. Neurochemical effects of the endocannabinoid uptake inhibitor UCM707 in various rat brain regions. de Lago E; Ortega-Gutiérrez S; Ramos JA; López Rodríguez ML; Fernández-Ruiz J Life Sci; 2007 Feb; 80(10):979-88. PubMed ID: 17173937 [TBL] [Abstract][Full Text] [Related]
29. Poststimulation catecholamine synthesis and tyrosine hydroxylase activation in central noradrenergic neurons. I. In vivo stimulation of the locus coeruleus. Salzman PM; Roth RH J Pharmacol Exp Ther; 1980 Jan; 212(1):64-73. PubMed ID: 6101343 [TBL] [Abstract][Full Text] [Related]
30. Abnormalities in norepinephrine turnover rate in the central nervous system of the genetically epilepsy-prone rat. Jobe PC; Ko KH; Dailey JW Brain Res; 1984 Jan; 290(2):357-60. PubMed ID: 6692149 [TBL] [Abstract][Full Text] [Related]
31. Irreversible binding and recovery of the norepinephrine uptake system using an alkylating derivative of norepinephrine. Baker SP; Standifer KM; Kalberg CJ; Pitha J; Sumners C J Neurochem; 1988 Apr; 50(4):1044-52. PubMed ID: 2894406 [TBL] [Abstract][Full Text] [Related]
32. Undernutrition and overnutrition in the neonatal rat: long-term effects on noradrenergic pathways in brain regions. Seidler FJ; Bell JM; Slotkin TA Pediatr Res; 1990 Feb; 27(2):191-7. PubMed ID: 2156213 [TBL] [Abstract][Full Text] [Related]
33. Regional development of norepinephrine, dopamine-beta-hydroxylase and tyrosine hydroxylase in the rat brain subsequent to neonatal treatment with subcutaneous 6-hydroxydopamine. Schmidt RH; Bhatnagar RK Brain Res; 1979 Apr; 166(2):293-308. PubMed ID: 34468 [TBL] [Abstract][Full Text] [Related]
34. Noradrenergic abnormalities in the genetically epilepsy-prone rat. Jobe PC; Mishra PK; Browning RA; Wang C; Adams-Curtis LE; Ko KH; Dailey JW Brain Res Bull; 1994; 35(5-6):493-504. PubMed ID: 7859107 [TBL] [Abstract][Full Text] [Related]
35. Strain differences in regional brain histamine levels between genetically epilepsy-prone and resistant rats. Onodera K; Tuomisto L; Tacke U; Airaksinen M Methods Find Exp Clin Pharmacol; 1992; 14(1):13-6. PubMed ID: 1619966 [TBL] [Abstract][Full Text] [Related]
36. Thalamic deficiency in norepinephrine release detected via intracerebral microdialysis: a synaptic determinant of seizure predisposition in the genetically epilepsy-prone rat. Yan QS; Jobe PC; Dailey JW Epilepsy Res; 1993 Mar; 14(3):229-36. PubMed ID: 8504793 [TBL] [Abstract][Full Text] [Related]
37. Preferential uptake of norepinephrine into dopaminergic terminals of a synaptosomal preparation from rat cerebral cortex. Michel M; Hiemke C; Ghraf R Brain Res; 1984 May; 301(1):149-52. PubMed ID: 6329439 [TBL] [Abstract][Full Text] [Related]
38. Effect of norepinephrine release on adrenoceptors in severe seizure genetically epilepsy-prone rats. Seo DO; Shin CY; Ryu JR; Cheong JH; Choi CR; Dailey JW; Reith ME; Jobe PC; Ko KH Eur J Pharmacol; 2000 May; 396(2-3):53-8. PubMed ID: 10822056 [TBL] [Abstract][Full Text] [Related]
39. Distribution of hypertrophied locus coeruleus projection to adult cerebellum after neonatal 6-hydroxydopamine. Schmidt RH; Bhatnagar RK Brain Res; 1979 Aug; 172(1):23-33. PubMed ID: 466465 [TBL] [Abstract][Full Text] [Related]
40. Regional distribution of norepinephrine and dopamine in brains of depressive suicides and alcoholic suicides. Moses SG; Robins E Psychopharmacol Commun; 1975; 1(3):327-37. PubMed ID: 1224002 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]