These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 27093949)
1. Converting Chemical Energy to Electricity through a Three-Jaw Mini-Generator Driven by the Decomposition of Hydrogen Peroxide. Xiao M; Wang L; Ji F; Shi F ACS Appl Mater Interfaces; 2016 May; 8(18):11403-11. PubMed ID: 27093949 [TBL] [Abstract][Full Text] [Related]
2. Mini-Generator Based on Self-Propelled Vertical Motion of a Functionally Cooperating Device Driven by H Zhang L; Zhang X; Xiao M; Zhang H; Zhang Y Chem Asian J; 2019 Jul; 14(14):2465-2471. PubMed ID: 30892821 [TBL] [Abstract][Full Text] [Related]
3. Electricity Generation through Light-Responsive Diving-Surfacing Locomotion of a Functionally Cooperating Smart Device. Yang X; Cheng M; Zhang L; Zhang S; Liu X; Shi F Adv Mater; 2018 Jul; ():e1803125. PubMed ID: 30028545 [TBL] [Abstract][Full Text] [Related]
4. Converting chemical energy into electricity through a functionally cooperating device with diving-surfacing cycles. Song M; Cheng M; Ju G; Zhang Y; Shi F Adv Mater; 2014 Nov; 26(41):7059-63. PubMed ID: 25146589 [TBL] [Abstract][Full Text] [Related]
5. Mini-Generator of Electrical Power Exploiting the Marangoni Flow Inspired Self-Propulsion. Frenkel M; Vilk A; Legchenkova I; Shoval S; Bormashenko E ACS Omega; 2019 Sep; 4(12):15265-15268. PubMed ID: 31552373 [TBL] [Abstract][Full Text] [Related]
6. A Multi-engine Marangoni Rotor with Controlled Motion for Mini-Generator Application. Lu G; Zhu G; Peng B; Zhao R; Shi F; Cheng M ACS Appl Mater Interfaces; 2023 May; 15(19):23980-23988. PubMed ID: 37140932 [TBL] [Abstract][Full Text] [Related]
7. Energy Harvesting from Upper-Limb Pulling Motions for Miniaturized Human-Powered Generators. Yeo J; Ryu MH; Yang Y Sensors (Basel); 2015 Jul; 15(7):15853-67. PubMed ID: 26151204 [TBL] [Abstract][Full Text] [Related]
8. Autonomous Motion of Bubble-Powered Carbonaceous Nanoflask Motors. Zhou C; Gao C; Lin Z; Wang D; Li Y; Yuan Y; Zhu B; He Q Langmuir; 2020 Jun; 36(25):7039-7045. PubMed ID: 31927899 [TBL] [Abstract][Full Text] [Related]
13. Vapor-Enabled Propulsion for Plasmonic Photothermal Motor at the Liquid/Air Interface. Meng F; Hao W; Yu S; Feng R; Liu Y; Yu F; Tao P; Shang W; Wu J; Song C; Deng T J Am Chem Soc; 2017 Sep; 139(36):12362-12365. PubMed ID: 28837327 [TBL] [Abstract][Full Text] [Related]
14. Dual-Responsive Self-Propulsion Smart Device Steadily Driven by CO Zhao T; Zhu X; Zhang L; Cang H; Zhang X; Li C; Wei H; Ma N ACS Appl Mater Interfaces; 2018 Jan; 10(4):4095-4101. PubMed ID: 29308646 [TBL] [Abstract][Full Text] [Related]
15. Light-Operated Dual-Mode Propulsion at the Liquid/Air Interface Using Flexible, Superhydrophobic, and Thermally Stable Photothermal Paper. Yang RL; Zhu YJ; Qin DD; Xiong ZC ACS Appl Mater Interfaces; 2020 Jan; 12(1):1339-1347. PubMed ID: 31880902 [TBL] [Abstract][Full Text] [Related]
16. Harvesting Hydropower via a Magnetoelastic Generator for Sustainable Water Splitting. Ock IW; Zhao X; Tat T; Xu J; Chen J ACS Nano; 2022 Oct; 16(10):16816-16823. PubMed ID: 36201791 [TBL] [Abstract][Full Text] [Related]
17. Catalytic gold nanoparticle driven pH specific chemical locomotion. Dey KK; Panda BR; Paul A; Basu S; Chattopadhyay A J Colloid Interface Sci; 2010 Aug; 348(2):335-41. PubMed ID: 20621816 [TBL] [Abstract][Full Text] [Related]
18. Motility of catalytic nanoparticles through self-generated forces. Paxton WF; Sen A; Mallouk TE Chemistry; 2005 Nov; 11(22):6462-70. PubMed ID: 16052651 [TBL] [Abstract][Full Text] [Related]
19. Multimodal chemo-/magneto-/phototaxis of 3G CNT-bots to power fuel cells. Mitra S; Roy N; Maity S; Bandyopadhyay D Microsyst Nanoeng; 2020; 6():19. PubMed ID: 34567634 [TBL] [Abstract][Full Text] [Related]