BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 27093956)

  • 1. A novel accelerometry-based algorithm for the detection of step durations over short episodes of gait in healthy elderly.
    Micó-Amigo ME; Kingma I; Ainsworth E; Walgaard S; Niessen M; van Lummel RC; van Dieën JH
    J Neuroeng Rehabil; 2016 Apr; 13():38. PubMed ID: 27093956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upper body accelerations during walking in healthy young and elderly men.
    Kavanagh JJ; Barrett RS; Morrison S
    Gait Posture; 2004 Dec; 20(3):291-8. PubMed ID: 15531176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heel and toe clearance estimation for gait analysis using wireless inertial sensors.
    Mariani B; Rochat S; Büla CJ; Aminian K
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3162-8. PubMed ID: 22955865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Step Detection and Parameterization for Gait Assessment Using a Single Waist-Worn Accelerometer.
    Soaz C; Diepold K
    IEEE Trans Biomed Eng; 2016 May; 63(5):933-942. PubMed ID: 26394415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerometry based assessment of gait parameters in children.
    Brandes M; Zijlstra W; Heikens S; van Lummel R; Rosenbaum D
    Gait Posture; 2006 Dec; 24(4):482-6. PubMed ID: 16427287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and validation of an accelerometer-based method for quantifying gait events.
    Boutaayamou M; Schwartz C; Stamatakis J; Denoël V; Maquet D; Forthomme B; Croisier JL; Macq B; Verly JG; Garraux G; Brüls O
    Med Eng Phys; 2015 Feb; 37(2):226-32. PubMed ID: 25618221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IMU-based gait analysis in lower limb prosthesis users: Comparison of step demarcation algorithms.
    Bastas G; Fleck JJ; Peters RA; Zelik KE
    Gait Posture; 2018 Jul; 64():30-37. PubMed ID: 29807270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gait parameter and event estimation using smartphones.
    Pepa L; Verdini F; Spalazzi L
    Gait Posture; 2017 Sep; 57():217-223. PubMed ID: 28667903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and validation of Comprehensive Gait Assessment using InerTial Sensor score (C-GAITS score) derived from acceleration and angular velocity data at heel and lower trunk among community-dwelling older adults.
    Misu S; Asai T; Doi T; Sawa R; Ueda Y; Murata S; Saito T; Sugimoto T; Isa T; Tsuboi Y; Yamada M; Ono R
    J Neuroeng Rehabil; 2019 May; 16(1):62. PubMed ID: 31138310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fourier-based integration of quasi-periodic gait accelerations for drift-free displacement estimation using inertial sensors.
    Sabatini AM; Ligorio G; Mannini A
    Biomed Eng Online; 2015 Nov; 14():106. PubMed ID: 26597696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Objective characterization of daily living transitions in patients with Parkinson's disease using a single body-fixed sensor.
    Bernad-Elazari H; Herman T; Mirelman A; Gazit E; Giladi N; Hausdorff JM
    J Neurol; 2016 Aug; 263(8):1544-51. PubMed ID: 27216626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated method to distinguish toe walking strides from normal strides in the gait of idiopathic toe walking children from heel accelerometry data.
    Pendharkar G; Percival P; Morgan D; Lai D
    Gait Posture; 2012 Mar; 35(3):478-82. PubMed ID: 22300731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of gait cycles in treadmill walking using a Kinect.
    Auvinet E; Multon F; Aubin CE; Meunier J; Raison M
    Gait Posture; 2015 Feb; 41(2):722-5. PubMed ID: 25442670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of spatio-temporal parameters during unconstrained walking.
    Zijlstra W
    Eur J Appl Physiol; 2004 Jun; 92(1-2):39-44. PubMed ID: 14985994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Walking pattern classification and walking distance estimation algorithms using gait phase information.
    Wang JS; Lin CW; Yang YT; Ho YJ
    IEEE Trans Biomed Eng; 2012 Oct; 59(10):2884-92. PubMed ID: 22893370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and validity of methods for the estimation of temporal gait parameters from heel-attached inertial sensors in younger and older adults.
    Misu S; Asai T; Ono R; Sawa R; Tsutsumimoto K; Ando H; Doi T
    Gait Posture; 2017 Sep; 57():295-298. PubMed ID: 28686998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time series classification using a modified LSTM approach from accelerometer-based data: A comparative study for gait cycle detection.
    Tan HX; Aung NN; Tian J; Chua MCH; Yang YO
    Gait Posture; 2019 Oct; 74():128-134. PubMed ID: 31518859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements.
    Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S
    Gait Posture; 2018 Oct; 66():76-82. PubMed ID: 30170137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time gait event detection using wearable sensors.
    Hanlon M; Anderson R
    Gait Posture; 2009 Nov; 30(4):523-7. PubMed ID: 19729307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of Temporal Gait Events from a Single Accelerometer Through the Scale-Space Filtering Idea.
    González I; Fontecha J; Hervás R; Bravo J
    J Med Syst; 2016 Dec; 40(12):251. PubMed ID: 27714561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.