BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 27094087)

  • 1. Identification of a residue crucial for the angiostatic activity of human mini tryptophanyl-tRNA synthetase by focusing on its molecular evolution.
    Nakamoto T; Miyanokoshi M; Tanaka T; Wakasugi K
    Sci Rep; 2016 Apr; 6():24750. PubMed ID: 27094087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative stress-responsive intracellular regulation specific for the angiostatic form of human tryptophanyl-tRNA synthetase.
    Wakasugi K; Nakano T; Morishima I
    Biochemistry; 2005 Jan; 44(1):225-32. PubMed ID: 15628863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An exposed cysteine residue of human angiostatic mini tryptophanyl-tRNA synthetase.
    Wakasugi K
    Biochemistry; 2010 Apr; 49(14):3156-60. PubMed ID: 20225827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A short peptide insertion crucial for angiostatic activity of human tryptophanyl-tRNA synthetase.
    Kise Y; Lee SW; Park SG; Fukai S; Sengoku T; Ishii R; Yokoyama S; Kim S; Nureki O
    Nat Struct Mol Biol; 2004 Feb; 11(2):149-56. PubMed ID: 14730354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human tryptophanyl-tRNA synthetase binds with heme to enhance its aminoacylation activity.
    Wakasugi K
    Biochemistry; 2007 Oct; 46(40):11291-8. PubMed ID: 17877375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of mini-TyrRS-induced angiogenesis response in endothelial cells by VE-cadherin-dependent mini-TrpRS.
    Zeng R; Chen YC; Zeng Z; Liu XX; Liu R; Qiang O; Li X
    Heart Vessels; 2012 Mar; 27(2):193-201. PubMed ID: 21442253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Species-specific differences in the regulation of the aminoacylation activity of mammalian tryptophanyl-tRNA synthetases.
    Wakasugi K
    FEBS Lett; 2010 Jan; 584(1):229-32. PubMed ID: 19941862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. VE-cadherin links tRNA synthetase cytokine to anti-angiogenic function.
    Tzima E; Reader JS; Irani-Tehrani M; Ewalt KL; Schwartz MA; Schimmel P
    J Biol Chem; 2005 Jan; 280(4):2405-8. PubMed ID: 15579907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An alternative conformation of human TrpRS suggests a role of zinc in activating non-enzymatic function.
    Xu X; Zhou H; Zhou Q; Hong F; Vo MN; Niu W; Wang Z; Xiong X; Nakamura K; Wakasugi K; Schimmel P; Yang XL
    RNA Biol; 2018; 15(4-5):649-658. PubMed ID: 28910573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A concerted tryptophanyl-adenylate-dependent conformational change in Bacillus subtilis tryptophanyl-tRNA synthetase revealed by the fluorescence of Trp92.
    Hogue CW; Doublié S; Xue H; Wong JT; Carter CW; Szabo AG
    J Mol Biol; 1996 Jul; 260(3):446-66. PubMed ID: 8757806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of human mitochondrial tryptophanyl-tRNA synthetase.
    Jorgensen R; Søgaard TM; Rossing AB; Martensen PM; Justesen J
    J Biol Chem; 2000 Jun; 275(22):16820-6. PubMed ID: 10828066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A human aminoacyl-tRNA synthetase as a regulator of angiogenesis.
    Wakasugi K; Slike BM; Hood J; Otani A; Ewalt KL; Friedlander M; Cheresh DA; Schimmel P
    Proc Natl Acad Sci U S A; 2002 Jan; 99(1):173-7. PubMed ID: 11773626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of mini-tyrosyl-tRNA synthetase/mini-tryptophanyl-tRNA synthetase on ischemic angiogenesis in rats: proliferation and migration of endothelial cells.
    Zeng R; Chen YC; Zeng Z; Liu WQ; Jiang XF; Liu R; Qiang O; Li X
    Heart Vessels; 2011 Jan; 26(1):69-80. PubMed ID: 20963594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of human tryptophanyl-tRNA synthetase catalytic fragment: insights into substrate recognition, tRNA binding, and angiogenesis activity.
    Yu Y; Liu Y; Shen N; Xu X; Xu F; Jia J; Jin Y; Arnold E; Ding J
    J Biol Chem; 2004 Feb; 279(9):8378-88. PubMed ID: 14660560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two essential regions for tRNA recognition in Bacillus subtilis tryptophanyl-tRNA synthetase.
    Jia J; Xu F; Chen X; Chen L; Jin Y; Wang DT
    Biochem J; 2002 Aug; 365(Pt 3):749-56. PubMed ID: 11966471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tryptophanyl-tRNA synthetase mediates high-affinity tryptophan uptake into human cells.
    Miyanokoshi M; Yokosawa T; Wakasugi K
    J Biol Chem; 2018 Jun; 293(22):8428-8438. PubMed ID: 29666190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structures of three protozoan homologs of tryptophanyl-tRNA synthetase.
    Merritt EA; Arakaki TL; Gillespie R; Napuli AJ; Kim JE; Buckner FS; Van Voorhis WC; Verlinde CL; Fan E; Zucker F; Hol WG
    Mol Biochem Parasitol; 2011 May; 177(1):20-8. PubMed ID: 21255615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of Pyrococcus horikoshii tryptophanyl-tRNA synthetase and structure-based phylogenetic analysis suggest an archaeal origin of tryptophanyl-tRNA synthetase.
    Dong X; Zhou M; Zhong C; Yang B; Shen N; Ding J
    Nucleic Acids Res; 2010 Mar; 38(4):1401-12. PubMed ID: 19942682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ancient adaptation of the active site of tryptophanyl-tRNA synthetase for tryptophan binding.
    Praetorius-Ibba M; Stange-Thomann N; Kitabatake M; Ali K; Söll I; Carter CW; Ibba M; Söll D
    Biochemistry; 2000 Oct; 39(43):13136-43. PubMed ID: 11052665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-canonical functions of human cytoplasmic tyrosyl-, tryptophanyl- and other aminoacyl-tRNA synthetases.
    Wakasugi K; Yokosawa T
    Enzymes; 2020; 48():207-242. PubMed ID: 33837705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.