These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 27094096)

  • 1. Modelling effects on grid cells of sensory input during self-motion.
    Raudies F; Hinman JR; Hasselmo ME
    J Physiol; 2016 Nov; 594(22):6513-6526. PubMed ID: 27094096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in Visual-Spatial Input May Underlie Different Compression Properties of Firing Fields for Grid Cell Modules in Medial Entorhinal Cortex.
    Raudies F; Hasselmo ME
    PLoS Comput Biol; 2015 Nov; 11(11):e1004596. PubMed ID: 26584432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absence of Visual Input Results in the Disruption of Grid Cell Firing in the Mouse.
    Chen G; Manson D; Cacucci F; Wills TJ
    Curr Biol; 2016 Sep; 26(17):2335-42. PubMed ID: 27498565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Irregular distribution of grid cell firing fields in rats exploring a 3D volumetric space.
    Grieves RM; Jedidi-Ayoub S; Mishchanchuk K; Liu A; Renaudineau S; Duvelle É; Jeffery KJ
    Nat Neurosci; 2021 Nov; 24(11):1567-1573. PubMed ID: 34381241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous attractor network models of grid cell firing based on excitatory-inhibitory interactions.
    Shipston-Sharman O; Solanka L; Nolan MF
    J Physiol; 2016 Nov; 594(22):6547-6557. PubMed ID: 27870120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial cell firing during virtual navigation of open arenas by head-restrained mice.
    Chen G; King JA; Lu Y; Cacucci F; Burgess N
    Elife; 2018 Jun; 7():. PubMed ID: 29911974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental boundaries as a mechanism for correcting and anchoring spatial maps.
    Giocomo LM
    J Physiol; 2016 Nov; 594(22):6501-6511. PubMed ID: 26563618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Mechanism for the Grid-to-Place Cell Transformation Revealed by Transgenic Depolarization of Medial Entorhinal Cortex Layer II.
    Kanter BR; Lykken CM; Avesar D; Weible A; Dickinson J; Dunn B; Borgesius NZ; Roudi Y; Kentros CG
    Neuron; 2017 Mar; 93(6):1480-1492.e6. PubMed ID: 28334610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual landmarks sharpen grid cell metric and confer context specificity to neurons of the medial entorhinal cortex.
    Pérez-Escobar JA; Kornienko O; Latuske P; Kohler L; Allen K
    Elife; 2016 Jul; 5():. PubMed ID: 27449281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recurrent amplification of grid-cell activity.
    D'Albis T; Kempter R
    Hippocampus; 2020 Dec; 30(12):1268-1297. PubMed ID: 33022854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Untethered firing fields and intermittent silences: Why grid-cell discharge is so variable.
    Nagele J; Herz AVM; Stemmler MB
    Hippocampus; 2020 Apr; 30(4):367-383. PubMed ID: 32045073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grid-like hexadirectional modulation of human entorhinal theta oscillations.
    Maidenbaum S; Miller J; Stein JM; Jacobs J
    Proc Natl Acad Sci U S A; 2018 Oct; 115(42):10798-10803. PubMed ID: 30282738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Grid Cells Encode Local Positional Information.
    Ismakov R; Barak O; Jeffery K; Derdikman D
    Curr Biol; 2017 Aug; 27(15):2337-2343.e3. PubMed ID: 28756950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ten Years of Grid Cells.
    Rowland DC; Roudi Y; Moser MB; Moser EI
    Annu Rev Neurosci; 2016 Jul; 39():19-40. PubMed ID: 27023731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient coding theory for a dynamic trajectory predicts non-uniform allocation of entorhinal grid cells to modules.
    Mosheiff N; Agmon H; Moriel A; Burak Y
    PLoS Comput Biol; 2017 Jun; 13(6):e1005597. PubMed ID: 28628647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grid cells in mice.
    Fyhn M; Hafting T; Witter MP; Moser EI; Moser MB
    Hippocampus; 2008; 18(12):1230-8. PubMed ID: 18683845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grid cell hexagonal patterns formed by fast self-organized learning within entorhinal cortex.
    Mhatre H; Gorchetchnikov A; Grossberg S
    Hippocampus; 2012 Feb; 22(2):320-34. PubMed ID: 21136517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling place cells and grid cells in multi-compartment environments: Entorhinal-hippocampal loop as a multisensory integration circuit.
    Li T; Arleo A; Sheynikhovich D
    Neural Netw; 2020 Jan; 121():37-51. PubMed ID: 31526953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Entorhinal cortex receptive fields are modulated by spatial attention, even without movement.
    Wilming N; König P; König S; Buffalo EA
    Elife; 2018 Mar; 7():. PubMed ID: 29537964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Entorhinal velocity signals reflect environmental geometry.
    Munn RGK; Mallory CS; Hardcastle K; Chetkovich DM; Giocomo LM
    Nat Neurosci; 2020 Feb; 23(2):239-251. PubMed ID: 31932764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.