BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 27094275)

  • 1. Removal of As(III) and As(V) from water by chitosan and chitosan derivatives: a review.
    Wang X; Liu Y; Zheng J
    Environ Sci Pollut Res Int; 2016 Jul; 23(14):13789-801. PubMed ID: 27094275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of arsenic (III) and arsenic (V) from aqueous medium using chitosan-coated biosorbent.
    Boddu VM; Abburi K; Talbott JL; Smith ED; Haasch R
    Water Res; 2008 Feb; 42(3):633-42. PubMed ID: 17822735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient removal of arsenic from water using a granular adsorbent: Fe-Mn binary oxide impregnated chitosan bead.
    Qi J; Zhang G; Li H
    Bioresour Technol; 2015 Oct; 193():243-9. PubMed ID: 26141284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional iron chitosan microspheres synthesized by ionotropic gelation for the removal of arsenic (V) from water.
    Lobo C; Castellari J; Colman Lerner J; Bertola N; Zaritzky N
    Int J Biol Macromol; 2020 Dec; 164():1575-1583. PubMed ID: 32750479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zerovalent iron encapsulated chitosan nanospheres - a novel adsorbent for the removal of total inorganic arsenic from aqueous systems.
    Gupta A; Yunus M; Sankararamakrishnan N
    Chemosphere; 2012 Jan; 86(2):150-5. PubMed ID: 22079302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel, bio-based, photoactive arsenic sorbent: TiO₂-impregnated chitosan bead.
    Miller SM; Zimmerman JB
    Water Res; 2010 Nov; 44(19):5722-9. PubMed ID: 20594571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of Arsenic (V) from Aqueous Solutions Using Chitosan-Red Scoria and Chitosan-Pumice Blends.
    Asere TG; Mincke S; De Clercq J; Verbeken K; Tessema DA; Fufa F; Stevens CV; Du Laing G
    Int J Environ Res Public Health; 2017 Aug; 14(8):. PubMed ID: 28792443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of chitosan and chitosan-derivatives to remove arsenic from aqueous solutions--a mini review.
    Pontoni L; Fabbricino M
    Carbohydr Res; 2012 Jul; 356():86-92. PubMed ID: 22537862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic removal approaches: A focus on chitosan biosorption to conserve the water sources.
    Ayub A; Raza ZA
    Int J Biol Macromol; 2021 Dec; 192():1196-1216. PubMed ID: 34655588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chitosan-transition metal ions complexes for selective arsenic(V) preconcentration.
    Shinde RN; Pandey AK; Acharya R; Guin R; Das SK; Rajurkar NS; Pujari PK
    Water Res; 2013 Jun; 47(10):3497-506. PubMed ID: 23622983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorption of malachite green on chitosan bead.
    Bekçi Z; Ozveri C; Seki Y; Yurdakoç K
    J Hazard Mater; 2008 Jun; 154(1-3):254-61. PubMed ID: 18022317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic remediation from drinking water by synthesized nano-alumina dispersed in chitosan-grafted polyacrylamide.
    Saha S; Sarkar P
    J Hazard Mater; 2012 Aug; 227-228():68-78. PubMed ID: 22647233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of sustainable magnetic chitosan biosorbent beads for kinetic remediation of arsenic contaminated water.
    Ayub A; Raza ZA; Majeed MI; Tariq MR; Irfan A
    Int J Biol Macromol; 2020 Nov; 163():603-617. PubMed ID: 32629050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous oxidation and adsorption of As(III) from water by cerium modified chitosan ultrafine nanobiosorbent.
    Zhang L; Zhu T; Liu X; Zhang W
    J Hazard Mater; 2016 May; 308():1-10. PubMed ID: 26808237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic removal using a biopolymer chitosan sorbent.
    Chen CC; Chung YC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(4):645-58. PubMed ID: 16779938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption and removal of arsenic from water by iron ore mining waste.
    Nguyen TV; Nguyen TV; Pham TL; Vigneswaran S; Ngo HH; Kandasamy J; Nguyen HK; Nguyen DT
    Water Sci Technol; 2009; 60(9):2301-8. PubMed ID: 19901461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and evaluation of iron-chitosan composites for removal of As(III) and As(V) from arsenic contaminated real life groundwater.
    Gupta A; Chauhan VS; Sankararamakrishnan N
    Water Res; 2009 Aug; 43(15):3862-70. PubMed ID: 19577786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative evaluation of As, Se and V removal technologies for the treatment of oil refinery wastewater.
    Gillenwater PS; Urgun-Demirtas M; Negri MC; Snyder SW
    Water Sci Technol; 2012; 65(1):112-8. PubMed ID: 22173414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of arsenic from water using manganese (III) oxide: Adsorption of As(III) and As(V).
    Babaeivelni K; Khodadoust AP
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016; 51(4):277-88. PubMed ID: 26745439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel chitosan goethite bionanocomposite beads for arsenic remediation.
    He J; Bardelli F; Gehin A; Silvester E; Charlet L
    Water Res; 2016 Sep; 101():1-9. PubMed ID: 27240296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.