These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 27094341)

  • 21. Two-dimensional polymers: concepts and perspectives.
    Payamyar P; King BT; Öttinger HC; Schlüter AD
    Chem Commun (Camb); 2016 Jan; 52(1):18-34. PubMed ID: 26522010
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Water-Soluble 3D Covalent Organic Framework that Displays an Enhanced Enrichment Effect of Photosensitizers and Catalysts for the Reduction of Protons to H
    Gao ZZ; Wang ZK; Wei L; Yin G; Tian J; Liu CZ; Wang H; Zhang DW; Zhang YB; Li X; Liu Y; Li ZT
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1404-1411. PubMed ID: 31789493
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Porous Frameworks Based on Supramolecular Ball Joints: Bringing Flexibility to Ordered 3D Lattices.
    Savastano M; Bazzicalupi C; Bianchi A
    Chemistry; 2020 May; 26(27):5994-6005. PubMed ID: 32150318
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly Luminescent and Water-Soluble Two-Dimensional Supramolecular Organic Framework: All-Organic Photosensitizer Template for Visible-Light-Driven Hydrogen Evolution from Water.
    Lee HJ; Kim HJ; Lee EC; Kim J; Park SY
    Chem Asian J; 2018 Feb; 13(4):390-394. PubMed ID: 29318776
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Supramolecular metal-organic frameworks that display high homogeneous and heterogeneous photocatalytic activity for H2 production.
    Tian J; Xu ZY; Zhang DW; Wang H; Xie SH; Xu DW; Ren YH; Wang H; Liu Y; Li ZT
    Nat Commun; 2016 May; 7():11580. PubMed ID: 27161853
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering supramolecular organic frameworks (SOFs) of C-alkylpyrogallol[4]arene with bipyridine-based spacers.
    Patil RS; Kumari H; Barnes CL; Atwood JL
    Chem Commun (Camb); 2015 Feb; 51(12):2304-7. PubMed ID: 25558480
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two-dimensional self-assemblies of telechelic organic compounds: structure and surface host-guest chemistry.
    Yan HJ; Liu J; Wang D; Wan LJ
    Philos Trans A Math Phys Eng Sci; 2013 Oct; 371(2000):20120302. PubMed ID: 24000354
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal-Organic Frameworks as Platforms for Functional Materials.
    Cui Y; Li B; He H; Zhou W; Chen B; Qian G
    Acc Chem Res; 2016 Mar; 49(3):483-93. PubMed ID: 26878085
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probing the stability of multicomponent self-assembled architectures based on cucurbit[8]uril in the gas phase.
    Cziferszky M; Biedermann F; Kalberer M; Scherman OA
    Org Biomol Chem; 2012 Mar; 10(12):2447-52. PubMed ID: 22336996
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Smart Materials Based on Synthetic Host Molecules: The Role of Host-Guest Chemistry in the Fabrication and Application.
    Liu P; Fang F; Wang H; Khashab NM
    Angew Chem Int Ed Engl; 2023 Aug; 62(32):e202218706. PubMed ID: 37072371
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-assemblies based on the "outer-surface interactions" of cucurbit[n]urils: new opportunities for supramolecular architectures and materials.
    Ni XL; Xiao X; Cong H; Zhu QJ; Xue SF; Tao Z
    Acc Chem Res; 2014 Apr; 47(4):1386-95. PubMed ID: 24673124
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiple Efficient Fluorescence Emission from Cucurbit[10]uril-[Cd
    Yao YQ; Zhang YJ; Zhang YQ; Tao Z; Ni XL; Wei G
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40760-40765. PubMed ID: 29091394
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein-based supramolecular polymers: progress and prospect.
    Luo Q; Dong Z; Hou C; Liu J
    Chem Commun (Camb); 2014 Sep; 50(70):9997-10007. PubMed ID: 25005829
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-Assembly of a Bilayer 2D Supramolecular Organic Framework in Water.
    Yang B; Yu SB; Zhang PQ; Wang ZK; Qi QY; Wang XQ; Xu XH; Yang HB; Wu ZQ; Liu Y; Ma D; Li ZT
    Angew Chem Int Ed Engl; 2021 Dec; 60(50):26268-26275. PubMed ID: 34562051
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Facile Construction of a Supramolecular Organic Framework Using Naphthyl Viologen Guests and CB[8] Host via Charge-Transfer Complexation.
    Madasamy K; Velayutham D; Kathiresan M
    ACS Omega; 2019 May; 4(5):8528-8538. PubMed ID: 31459943
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Supramolecular polymeric materials via cyclodextrin-guest interactions.
    Harada A; Takashima Y; Nakahata M
    Acc Chem Res; 2014 Jul; 47(7):2128-40. PubMed ID: 24911321
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Superoxide radical generator based on triphenylamine-based supramolecular organic framework for green light photocatalysis.
    Yang XZ; Zhu RX; Zhu RY; Liu H; Yu S; Xing LB
    J Colloid Interface Sci; 2024 Mar; 658():392-400. PubMed ID: 38113548
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controllable coordination-driven self-assembly: from discrete metallocages to infinite cage-based frameworks.
    Chen L; Chen Q; Wu M; Jiang F; Hong M
    Acc Chem Res; 2015 Feb; 48(2):201-10. PubMed ID: 25517043
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication of Supramolecular Bioactive Surfaces via β-Cyclodextrin-Based Host-Guest Interactions.
    Zhan W; Wei T; Yu Q; Chen H
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):36585-36601. PubMed ID: 30285413
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Incorporating Bacteria as a Living Component in Supramolecular Self-Assembled Monolayers through Dynamic Nanoscale Interactions.
    Sankaran S; Kiren MC; Jonkheijm P
    ACS Nano; 2015; 9(4):3579-86. PubMed ID: 25738514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.