These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Photoredox Catalytic Organic Transformations using Heterogeneous Carbon Nitrides. Savateev A; Ghosh I; König B; Antonietti M Angew Chem Int Ed Engl; 2018 Dec; 57(49):15936-15947. PubMed ID: 30066478 [TBL] [Abstract][Full Text] [Related]
7. Combining rhodium and photoredox catalysis for C-H functionalizations of arenes: oxidative Heck reactions with visible light. Fabry DC; Zoller J; Raja S; Rueping M Angew Chem Int Ed Engl; 2014 Sep; 53(38):10228-31. PubMed ID: 25159225 [TBL] [Abstract][Full Text] [Related]
8. The Development of Visible-Light Photoredox Catalysis in Flow. Garlets ZJ; Nguyen JD; Stephenson CR Isr J Chem; 2014 Apr; 54(4):351-360. PubMed ID: 25484447 [TBL] [Abstract][Full Text] [Related]
9. Photoredox Catalysis with Metal Complexes Made from Earth-Abundant Elements. Larsen CB; Wenger OS Chemistry; 2018 Feb; 24(9):2039-2058. PubMed ID: 28892199 [TBL] [Abstract][Full Text] [Related]
10. Metal-free carbonylations by photoredox catalysis. Majek M; Jacobi von Wangelin A Angew Chem Int Ed Engl; 2015 Feb; 54(7):2270-4. PubMed ID: 25414135 [TBL] [Abstract][Full Text] [Related]
11. Recent Advances in Visible-Light Photoredox Catalysis for the Thiol-Ene/Yne Reactions. Xiao Q; Tong QX; Zhong JJ Molecules; 2022 Jan; 27(3):. PubMed ID: 35163886 [TBL] [Abstract][Full Text] [Related]
12. Understanding the Kinetics and Spectroscopy of Photoredox Catalysis and Transition-Metal-Free Alternatives. Pitre SP; McTiernan CD; Scaiano JC Acc Chem Res; 2016 Jun; 49(6):1320-30. PubMed ID: 27023767 [TBL] [Abstract][Full Text] [Related]
13. Transition-metal-free visible-light photoredox catalysis at room-temperature for decarboxylative fluorination of aliphatic carboxylic acids by organic dyes. Wu X; Meng C; Yuan X; Jia X; Qian X; Ye J Chem Commun (Camb); 2015 Jul; 51(59):11864-7. PubMed ID: 26111079 [TBL] [Abstract][Full Text] [Related]
14. Mechanistic Perspectives on Organic Photoredox Catalysis for Aromatic Substitutions. Majek M; Jacobi von Wangelin A Acc Chem Res; 2016 Oct; 49(10):2316-2327. PubMed ID: 27669097 [TBL] [Abstract][Full Text] [Related]
15. Redox-neutral carbon-heteroatom bond formation under photoredox catalysis. Ghosh S; Majumder S; Ghosh D; Hajra A Chem Commun (Camb); 2023 Jun; 59(46):7004-7027. PubMed ID: 37171250 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of N-Containing Heterocyclic Compounds Using Visible-light Photoredox Catalysis. Zhou L; Lokman Hossain M; Xiao T Chem Rec; 2016 Feb; 16(1):319-34. PubMed ID: 26751828 [TBL] [Abstract][Full Text] [Related]
17. Redox-neutral α-allylation of amines by combining palladium catalysis and visible-light photoredox catalysis. Xuan J; Zeng TT; Feng ZJ; Deng QH; Chen JR; Lu LQ; Xiao WJ; Alper H Angew Chem Int Ed Engl; 2015 Jan; 54(5):1625-8. PubMed ID: 25504920 [TBL] [Abstract][Full Text] [Related]
18. Applications of visible light photoredox catalysis to the synthesis of natural products and related compounds. Nicholls TP; Leonori D; Bissember AC Nat Prod Rep; 2016 Oct; 33(11):1248-1254. PubMed ID: 27470920 [TBL] [Abstract][Full Text] [Related]
19. Sensitization-Initiated Electron Transfer for Photoredox Catalysis. Ghosh I; Shaikh RS; König B Angew Chem Int Ed Engl; 2017 Jul; 56(29):8544-8549. PubMed ID: 28544442 [TBL] [Abstract][Full Text] [Related]
20. Recent Synthetic Applications of the Hypervalent Iodine(III) Reagents in Visible-Light-Induced Photoredox Catalysis. Chen C; Wang X; Yang T Front Chem; 2020; 8():551159. PubMed ID: 33173767 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]