These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
592 related articles for article (PubMed ID: 27095109)
21. Cloning, characterization, and expression analysis of acyl-acyl carrier protein (ACP)-thioesterase B from seeds of Chinese Spicehush (Lindera communis). Dong S; Huang J; Li Y; Zhang J; Lin S; Zhang Z Gene; 2014 May; 542(1):16-22. PubMed ID: 24631366 [TBL] [Abstract][Full Text] [Related]
23. Identification and Functional Characterization of Acyl-ACP Thioesterases B (GhFatBs) Responsible for Palmitic Acid Accumulation in Cotton Seeds. Liu B; Sun Y; Wang X; Xue J; Wang J; Jia X; Li R Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361594 [TBL] [Abstract][Full Text] [Related]
24. Cloning and functional expression of an acyl-ACP thioesterase FatB type from Diploknema (Madhuca) butyracea seeds in Escherichia coli. Jha JK; Maiti MK; Bhattacharjee A; Basu A; Sen PC; Sen SK Plant Physiol Biochem; 2006; 44(11-12):645-55. PubMed ID: 17092734 [TBL] [Abstract][Full Text] [Related]
25. The Lotus japonicus acyl-acyl carrier protein thioesterase FatM is required for mycorrhiza formation and lipid accumulation of Rhizophagus irregularis. Brands M; Wewer V; Keymer A; Gutjahr C; Dörmann P Plant J; 2018 Jul; 95(2):219-232. PubMed ID: 29687516 [TBL] [Abstract][Full Text] [Related]
26. A Cuphea beta-ketoacyl-ACP synthase shifts the synthesis of fatty acids towards shorter chains in Arabidopsis seeds expressing Cuphea FatB thioesterases. Leonard JM; Knapp SJ; Slabaugh MB Plant J; 1998 Mar; 13(5):621-8. PubMed ID: 9681004 [TBL] [Abstract][Full Text] [Related]
27. Characterization and cloning of a stearoyl/oleoyl specific fatty acyl-acyl carrier protein thioesterase from the seeds of Madhuca longifolia (latifolia). Ghosh SK; Bhattacharjee A; Jha JK; Mondal AK; Maiti MK; Basu A; Ghosh D; Ghosh S; Sen SK Plant Physiol Biochem; 2007 Dec; 45(12):887-97. PubMed ID: 17977002 [TBL] [Abstract][Full Text] [Related]
28. Isoforms of acyl carrier protein involved in seed-specific fatty acid synthesis. Suh MC; Schultz DJ; Ohlrogge JB Plant J; 1999 Mar; 17(6):679-88. PubMed ID: 10366274 [TBL] [Abstract][Full Text] [Related]
29. Alteration of the specificity and regulation of fatty acid synthesis of Escherichia coli by expression of a plant medium-chain acyl-acyl carrier protein thioesterase. Voelker TA; Davies HM J Bacteriol; 1994 Dec; 176(23):7320-7. PubMed ID: 7961504 [TBL] [Abstract][Full Text] [Related]
30. Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity. Jing F; Cantu DC; Tvaruzkova J; Chipman JP; Nikolau BJ; Yandeau-Nelson MD; Reilly PJ BMC Biochem; 2011 Aug; 12():44. PubMed ID: 21831316 [TBL] [Abstract][Full Text] [Related]
31. A specific acyl-ACP thioesterase implicated in medium-chain fatty acid production in immature cotyledons of Umbellularia californica. Pollard MR; Anderson L; Fan C; Hawkins DJ; Davies HM Arch Biochem Biophys; 1991 Feb; 284(2):306-12. PubMed ID: 1989513 [TBL] [Abstract][Full Text] [Related]
32. Metabolic control analysis of de novo sunflower fatty acid biosynthesis. Martínez-Force E; Garcés R Biochem Soc Trans; 2000 Dec; 28(6):669-71. PubMed ID: 11171164 [TBL] [Abstract][Full Text] [Related]
33. Broad-range and binary-range acyl-acyl-carrier protein thioesterases suggest an alternative mechanism for medium-chain production in seeds. Voelker TA; Jones A; Cranmer AM; Davies HM; Knutzon DS Plant Physiol; 1997 Jun; 114(2):669-77. PubMed ID: 9193098 [TBL] [Abstract][Full Text] [Related]
34. Heterologous Expression of Liu Y; Han J; Li Z; Jiang Z; Luo L; Zhang Y; Chen M; Yang Y; Liu Z Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457027 [TBL] [Abstract][Full Text] [Related]
35. Identification of active site residues implies a two-step catalytic mechanism for acyl-ACP thioesterase. Jing F; Yandeau-Nelson MD; Nikolau BJ Biochem J; 2018 Dec; 475(23):3861-3873. PubMed ID: 30409825 [TBL] [Abstract][Full Text] [Related]
36. Genome-wide identification and analysis of soybean acyl-ACP thioesterase gene family reveals the role of GmFAT to improve fatty acid composition in soybean seed. Zhou Z; Lakhssassi N; Knizia D; Cullen MA; El Baz A; Embaby MG; Liu S; Badad O; Vuong TD; AbuGhazaleh A; Nguyen HT; Meksem K Theor Appl Genet; 2021 Nov; 134(11):3611-3623. PubMed ID: 34319424 [TBL] [Abstract][Full Text] [Related]
37. Increase of the stearic acid content in high-oleic sunflower (Helianthus annuus) seeds. Pleite R; Martínez-Force E; Garcés R J Agric Food Chem; 2006 Dec; 54(25):9383-8. PubMed ID: 17147422 [TBL] [Abstract][Full Text] [Related]
38. The role of acyl carrier protein isoforms from Cuphea lanceolata seeds in the de-novo biosynthesis of medium-chain fatty acids. Schütt BS; Brummel M; Schuch R; Spener F Planta; 1998 Jun; 205(2):263-8. PubMed ID: 9637071 [TBL] [Abstract][Full Text] [Related]
39. Two distinct domains contribute to the substrate acyl chain length selectivity of plant acyl-ACP thioesterase. Jing F; Zhao L; Yandeau-Nelson MD; Nikolau BJ Nat Commun; 2018 Feb; 9(1):860. PubMed ID: 29491418 [TBL] [Abstract][Full Text] [Related]
40. Characterization of the acyl-ACP thioesterases from Martins-Noguerol R; DeAndrés-Gil C; Garcés R; Salas JJ; Martínez-Force E; Moreno-Pérez AJ Heliyon; 2020 Oct; 6(10):e05237. PubMed ID: 33102858 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]