BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 27095674)

  • 21. Effect of Flow and Particle-Plastron Collision on the Longevity of Superhydrophobicity.
    Hokmabad BV; Ghaemi S
    Sci Rep; 2017 Jan; 7():41448. PubMed ID: 28128296
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioinspired Universal Approaches for Cavity Regulation during Cylinder Impact Processes for Drag Reduction in Aqueous Media: Macrogeometry Vanquishing Wettability.
    Yao C; Zhou Y; Wang J; Jiang L
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38808-38815. PubMed ID: 34347428
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Substrate-independent, switchable bubble wettability surfaces induced by ultrasonic treatment.
    Chu D; Sun X; Hu Y; Duan JA
    Soft Matter; 2019 Sep; 15(37):7398-7403. PubMed ID: 31464333
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recoverable underwater superhydrophobicity from a fully wetted state via dynamic air spreading.
    Zhao Y; Xu Z; Gong L; Yang S; Zeng H; He C; Ge D; Yang L
    iScience; 2021 Dec; 24(12):103427. PubMed ID: 34877492
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Infinite lifetime of underwater superhydrophobic states.
    Xu M; Sun G; Kim CJ
    Phys Rev Lett; 2014 Sep; 113(13):136103. PubMed ID: 25302907
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved Stable Drag Reduction of Controllable Laser-Patterned Superwetting Surfaces Containing Bioinspired Micro/Nanostructured Arrays.
    Rong W; Zhang H; Mao Z; Chen L; Liu X
    ACS Omega; 2022 Jan; 7(2):2049-2063. PubMed ID: 35071893
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Drag crisis moderation by thin air layers sustained on superhydrophobic spheres falling in water.
    Jetly A; Vakarelski IU; Thoroddsen ST
    Soft Matter; 2018 Feb; 14(9):1608-1613. PubMed ID: 29411833
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Complete Electrolytic Plastron Recovery in a Low Drag Superhydrophobic Surface.
    Lloyd BP; Bartlett PN; Wood RJK
    ACS Omega; 2021 Feb; 6(5):3483-3489. PubMed ID: 33644523
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dual dimensional nanostructures with highly durable non-wetting properties under dynamic and underwater conditions.
    Baek S; Kim W; Jeon S; Yong K
    Nanoscale; 2017 May; 9(20):6665-6673. PubMed ID: 28333171
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hierarchically sculptured plant surfaces and superhydrophobicity.
    Koch K; Bohn HF; Barthlott W
    Langmuir; 2009 Dec; 25(24):14116-20. PubMed ID: 19634871
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical investigation of the effect of air layer on drag reduction in channel flow over a superhydrophobic surface.
    Nguyen HT; Lee SW; Ryu J; Kim M; Yoon J; Chang K
    Sci Rep; 2024 May; 14(1):12053. PubMed ID: 38802500
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Water Impalement Resistance and Drag Reduction of the Superhydrophobic Surface with Hydrophilic Strips.
    Cao Y; Liu X; Zhang L; Wu Y; You C; Li H; Duan H; Huang J; Lv P
    ACS Appl Mater Interfaces; 2024 Apr; 16(13):16973-16982. PubMed ID: 38502909
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Robust Superhydrophobic Carbon Nanotube Film with Lotus Leaf Mimetic Multiscale Hierarchical Structures.
    Wang P; Zhao T; Bian R; Wang G; Liu H
    ACS Nano; 2017 Dec; 11(12):12385-12391. PubMed ID: 29140678
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioinspired surfaces with special micro-structures and wettability for drag reduction: which surface design will be a better choice?
    Zhu Y; Yang F; Guo Z
    Nanoscale; 2021 Feb; 13(6):3463-3482. PubMed ID: 33566874
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Superrepellency of underwater hierarchical structures on
    Xiang Y; Huang S; Huang TY; Dong A; Cao D; Li H; Xue Y; Lv P; Duan H
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2282-2287. PubMed ID: 31964812
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cassie State Stability and Gas Restoration Capability of Superhydrophobic Surfaces with Truncated Cone-Shaped Pillars.
    Han X; Wang M; Yan R; Wang H
    Langmuir; 2021 Nov; 37(44):12897-12906. PubMed ID: 34714661
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Drag reduction using bionic groove surface for underwater vehicles.
    Zheng S; Liang X; Li J; Liu Y; Tang J
    Front Bioeng Biotechnol; 2023; 11():1223691. PubMed ID: 37691898
    [No Abstract]   [Full Text] [Related]  

  • 39. Wettability of natural superhydrophobic surfaces.
    Webb HK; Crawford RJ; Ivanova EP
    Adv Colloid Interface Sci; 2014 Aug; 210():58-64. PubMed ID: 24556235
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Underwater Drag Reduction and Buoyancy Enhancement on Biomimetic Antiabrasive Superhydrophobic Coatings.
    Wang Z; Liu X; Ji J; Tao T; Zhang T; Xu J; Jiao Y; Liu K
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):48270-48280. PubMed ID: 34592810
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.