These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 27095674)

  • 41. Underwater Drag Reduction and Buoyancy Enhancement on Biomimetic Antiabrasive Superhydrophobic Coatings.
    Wang Z; Liu X; Ji J; Tao T; Zhang T; Xu J; Jiao Y; Liu K
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):48270-48280. PubMed ID: 34592810
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Importance of hierarchical structures in wetting stability on submersed superhydrophobic surfaces.
    Xue Y; Chu S; Lv P; Duan H
    Langmuir; 2012 Jun; 28(25):9440-50. PubMed ID: 22642584
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bioinspired Design of Underwater Superaerophobic and Superaerophilic Surfaces by Femtosecond Laser Ablation for Anti- or Capturing Bubbles.
    Yong J; Chen F; Fang Y; Huo J; Yang Q; Zhang J; Bian H; Hou X
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39863-39871. PubMed ID: 29067804
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Study on the Performance of a Surface with Coupled Wettability Difference and Convex-Stripe Array for Improved Air Layer Stability.
    Qiao S; Cai C; Pan C; Liu Y; Zhang Q
    Langmuir; 2024 Mar; 40(9):4940-4952. PubMed ID: 38378438
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Roles of Riblet and Superhydrophobic Surfaces in Energy Saving Using a Spatial Correlation Analysis.
    Liu C; Wang W; Hu X; Fang J; Liu F
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903754
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Thriving artificial underwater drag-reduction materials inspired from aquatic animals: progresses and challenges.
    Tian G; Fan D; Feng X; Zhou H
    RSC Adv; 2021 Jan; 11(6):3399-3428. PubMed ID: 35424313
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of fluid flow on the stability and wetting transition of submerged superhydrophobic surfaces.
    Xiang Y; Xue Y; Lv P; Li D; Duan H
    Soft Matter; 2016 May; 12(18):4241-6. PubMed ID: 27071538
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Surface adhesive forces: a metric describing the drag-reducing effects of superhydrophobic coatings.
    Cheng M; Song M; Dong H; Shi F
    Small; 2015 Apr; 11(14):1665-71. PubMed ID: 25418808
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Boundary layer drag reduction research hypotheses derived from bio-inspired surface and recent advanced applications.
    Luo Y; Yuan L; Li J; Wang J
    Micron; 2015 Dec; 79():59-73. PubMed ID: 26348428
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Significant and stable drag reduction with air rings confined by alternated superhydrophobic and hydrophilic strips.
    Hu H; Wen J; Bao L; Jia L; Song D; Song B; Pan G; Scaraggi M; Dini D; Xue Q; Zhou F
    Sci Adv; 2017 Sep; 3(9):e1603288. PubMed ID: 28879234
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A bio-inspired two-stage bionic drag reduction method.
    Luo Z; Jia X; Zhu S; Zhao P; Zhang K; Guo H
    Rev Sci Instrum; 2024 Mar; 95(3):. PubMed ID: 38497834
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bidirectional Underwater Drag Reduction on Bionic Flounder Two-Tier Structural Surfaces.
    He X; Liu Y; Zhan H; Liu Y; Zhao L; Feng S
    Biomimetics (Basel); 2023 Mar; 8(1):. PubMed ID: 36975346
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spontaneous recovery of superhydrophobicity on nanotextured surfaces.
    Prakash S; Xi E; Patel AJ
    Proc Natl Acad Sci U S A; 2016 May; 113(20):5508-13. PubMed ID: 27140619
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Traces of surfactants can severely limit the drag reduction of superhydrophobic surfaces.
    Peaudecerf FJ; Landel JR; Goldstein RE; Luzzatto-Fegiz P
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7254-7259. PubMed ID: 28655848
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Drag Reduction of Anisotropic Superhydrophobic Surfaces Prepared by Laser Etching.
    Tuo Y; Zhang H; Rong W; Jiang S; Chen W; Liu X
    Langmuir; 2019 Aug; 35(34):11016-11022. PubMed ID: 31364849
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces.
    Teisala H; Tuominen M; Aromaa M; Stepien M; Mäkelä JM; Saarinen JJ; Toivakka M; Kuusipalo J
    Langmuir; 2012 Feb; 28(6):3138-45. PubMed ID: 22263866
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Coupled Bionic Drag-Reducing Surface Covered by Conical Protrusions and Elastic Layer Inspired from Pufferfish Skin.
    Feng X; Fan D; Tian G; Zhang Y
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32747-32760. PubMed ID: 35815482
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanically robust superhydrophobicity on hierarchically structured Si surfaces.
    Xiu Y; Liu Y; Hess DW; Wong CP
    Nanotechnology; 2010 Apr; 21(15):155705. PubMed ID: 20332558
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bioinspired air-retaining nanofur for drag reduction.
    Kavalenka MN; Vüllers F; Lischker S; Zeiger C; Hopf A; Röhrig M; Rapp BE; Worgull M; Hölscher H
    ACS Appl Mater Interfaces; 2015 May; 7(20):10651-5. PubMed ID: 25945543
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of flow on longevity of superhydrophobic coatings.
    Samaha MA; Tafreshi HV; Gad-el-Hak M
    Langmuir; 2012 Jun; 28(25):9759-66. PubMed ID: 22639940
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.